
Volume:4 Issue:3, 1999

J a v a D e v e l o p e r s J o u r n a l . c o m

TM

SYS-CON
PUBLICATIONS

Widget Factory
JCalendar

by Claude Duguay pg.30

Guest Editorial
Java Makes a Move Back-
into Embedded Systems
by AlanWilliamson pg.7

Corba Corner
Corba vs Servlets:
What to Use Where

by Rachel Gollub pg.16

Straight Talking
‘Is the End Night?’

by Alan Williamson pg.20

Product Review
NuMega DevPartner

for Java
by David Jung pg54

Swing
How to Convert from

AWT to swing
by Doug Porter pg.52

SYS-CON Radio
Inverviews from JBE

Host Chad Sitler pg.52 & 57

JDJ Feature: Service Brokers Bruce H. Cottman
Transforming legacy assests into Java services 8

JDJ Feature: Callbacks in Corba P.G. Sarang
Using a traffic light controller can help guide your callbacks 24

Case Study SilverStream Focus: Chad Ruff

Pathways’ SilverSteam Solution
Sage Software uses SilverStream to help social
services agenices help the homeless 36

IMHO SilverStream Focus: David Skok

The Application Server Market
Some 40 companies claim to have applicaion
servers,each offering widely different funtionality.
Where is the market headed? 40

Product Review: SilverStream 2.0 Steve Benfield & Brad Cooley
SilverSteam attacks complex Web applicaiton
development and deployment in version 2.0 44

Java Server Pages: JSP vs JSP Rob Tiffany
A comparison ot two Java Server Pages –– similarities and differences 58

From the Editor
Stuck in the Middle

with You
by Sean Rhody pg. 5

SILVERSTREAM SPECIAL FOCUS ISSUE

2 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Oracle
www.oracle.com/info/27

3VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Protoview
www.protoview.com

4 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Schlumberger
www.cyberflex.slb.com

About a year ago, in a magazine not too far away, I wrote an article called “Middle-Tier
Madness.” A year and several languages later, we’re back at the middle-tier stage again.
Distributed computing is one of my main areas of interest, so my concern with the middle
tier shouldn’t surprise anyone.

I’ve done work with all three of the major standards for distributed work – CORBA,
COM and EJB. I much prefer EJB. For those of you that don’t recognize the acronym, it
stands for Enterprise JavaBeans, a specification from Sun Microsystems that describes
how to construct server components for a Java-based server.

We can do Java server components for any of these standards (although COM is more
trouble than it’s worth), and can likewise do Java clients that can speak to servers of this
type. The selection of the standard has a great deal to do with the overall environment in
the company that’s going to build a distributed system. If the company is a Microsoft shop,
COM is almost a no-brainer. If there is a mix of computers – UNIX, Windows and Macin-
tosh – COM is probably less of a choice, so it comes down to CORBA or EJB. The EJB spec-
ification was released a year ago (March 1998) and the
first servers began to appear toward the end of the third
quarter, so until recently the only choice was CORBA.
And it may still need to be the choice, depending on the
environment.

One of the greatest strengths of EJB is that it’s an all-
Java environment. The strength of that approach lies in
the fact that by using a single language and programming
paradigm, EJB allows for a much richer approach to data
transfer and marshaling. No abstract IDL is required to
create components; you simply write them in Java. To
pass complex objects from one machine to another, you
implement Serializable, which is trivial, since that inter-
face has no methods.

That strength is also the biggest weakness of EJB.
One of the biggest strengths of CORBA is the ability to integrate multiple languages. In
many large companies Java is only one of several languages that will be used for develop-
ment. Typically, a company uses C/C++, PowerBuilder, Visual Basic and sometimes
COBOL. For companies that need to continue to use these languages, EJB offers only a lim-
ited amount of usefulness. If a company can commit itself to moving to Java as its main
language, EJB is a good choice, as you can work around the other languages to a certain
extent and rewrite as time permits. Otherwise CORBA is your best bet.

Whatever you choose, you’re in for some interesting times. I guarantee you that devel-
oping distributed systems will make a perfectionist out of you. It has to. In earlier times,
errant code could crash only one system at a time. Now, bad code in the middle tier has
the capability of affecting thousands of people. It’s also much more difficult to debug, as
the number of possible problems increases dramatically due to the additional layers of
communications and the ambiguities present in some of the specifications. If you want to
make it work, you have to tighten up your overall code process. Nothing less than zero
defects will work.

I hope you’ll find information in this issue to aid you in the pursuit of that goal. Let me
know – I have to start planning next year’s version of this column.

About the Author
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a senior consultant with Computer
Sciences Corporation, where he specializes in application architecture – particularly distributed systems.
He can be reached by e-mail at sean@sys-con.com.

Stuck in the
Middle with You

FROM THE EDITOR

Sean Rhody, Editor-in-Chief
EDITORIAL ADVISORY BOARD

Ted Coombs, Bill Dunlap, David Gee, Michel Gerin,
Arthur van Hoff, Brian Maso, John Olson, George Paolini,

Kim Polese, Sean Rhody, Rick Ross, Ajit Sagar,
Richard Soley, Alan Williamson

Editor-in-Chief: Sean Rhody
Art Director: Jim Morgan

Executive Editor: M’lou Pinkham
Managing Editor: Brian Christensen

Production Editor: Hollis Osher
Editorial Consultant: Scott Davison

Technical Editor: Bahadir Karuv
Product Review Editor: Ed Zebrowski

Industry News Editor. Alan Williamson
E-commerce Editor. Ajit Sagar

WRITERS IN THIS ISSUE
Steve Benfield, Brad Cooley, Bruce H. Cottman,

Claude Duguay, Rachel Gollub, David Jung,
George Kassabgi, Doug Porter, Jim Redman,

Sean Rhody, Chad Ruff, P.G. Sarang, David Skok,
Robert Tiffany, Alan Williamson

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus airmail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Advertising Account Manager Robyn Forma
Advertising Assistant Megan Ring

Accounting: Ignacio Arellano
Graphic Designers: Robin Groves

Alex Botero
SYS-CON Radio Editor Chad Sitler

Webmaster: Robert Diamond
Customer Service: Sian O’Gorman

Paula Horowitz
Ann Marie Milillo

Online Customer Service: Mitchell Low

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-7300 Fax: 914 735-6547

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize

its readers to use the articles submitted for publication.

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048 Phone: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.

SYS-CON Publications, Inc. is independent of Sun Microsystems, Inc.
All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

“Developing
distributed
systems will

make a
perfectionist

out of you.
It has to.”

5VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

6 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

NetBeans
www.netbeans.com

7VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

The modern manufacturing facility or labora-
tory often appears as thousands of points of infor-
mation, scattered in and among hundreds of
pieces of machinery and other equipment. Good
integration of these information sources provides
for an ongoing challenge.

The goal of systems integration is to get these
machines networked and accessible in some uni-
form manner throughout the manufacturing facil-
ity, and to provide information in human-readable
form by uniform, nonproprietary and platform-
independent means. Java and Internet technolo-
gies can help to bring this goal within reach –
leaving it as an implementation project and not as
the research project it appears to be today.

The first step in this process is to blend Java
and embedded Web servers with traditional fac-
tory automation methods. This may mean replac-
ing outdated equipment (or the controllers on
older equipment) with a new Ethernet and Web-
enabled controller or – and this is often more cost
effective – augmenting existing systems with Java-
based monitoring and control systems. These
retrofitted solutions add to the existing function-
ality of production lines without significantly
impacting the current operation. These small con-
trollers are called embedded systems and almost
always run with no more than a minimal non-
graphical user interface. The challenge with these
systems is information access.

Embedded systems are everywhere, but they
mostly go unnoticed in our daily lives. The most
obvious ones are kitchen devices such as
microwaves, bread makers, toaster ovens and so
forth, but this also includes the systems control-
ling the under-the-hood operations in most mod-
ern vehicles. Call me a cynic, but I don’t expect
toasters or bread machines to have an Ethernet
connection or Web access anytime soon. But
embedded systems within factories present a
completely different picture.

When most people think of Web servers serv-
ing up Java applets, they think of the large, fairly
powerful computer systems on the Internet. How-
ever, the simplicity of the Web server and the
architecture of Java make it an obvious match for
the world of embedded systems. Many of these
systems are using modern versions of the old 8-
or 16-bit processors, such as the old Zilog Z80 and
Intel 8088 (the chip in the original IBM PC). The
cost of adding a full, traditional user interface,
complete with hardware, to these small systems
is prohibitive, yet information is often available
that would merit more display and access.

In factory automation these embedded sys-
tems often control complex processes and equip-
ment. They’re used in almost every step of every
manufacturing process. The robots that build cars
use embedded computers; almost every chemical
process from refining oil to filling toothpaste tubes
uses embedded real-time controllers. As you might
imagine, these processes are not simple and to
optimize and monitor these systems requires some
way to get the information out of the controller.

The first challenge is simply to get a user interface
to these systems. Java applets and an embedded
Web server make this process relatively simple.
The existence of Java-based toolkits specifically
designed for this type of automation display can
make building these screens fairly straightforward.
Now the information for the display becomes a
part of the equipment, owned by and embedded
within the controller. Logically, this is how it should
be – the information and access to the information
centralized in one integrated package and
accessed through Java applets from anywhere.

Many of these embedded systems are con-
trolled by real-time operating systems, and the
vendors of these systems – almost without excep-
tion – provide support for embedded Web
servers. There’s also a whole class of industrial
controllers, called Programmable Logic Con-
trollers or PLCs, that run with very small amounts
of memory (often less than 64 K bytes) that also
support embedded Web servers. The growing
acceptance of Java in these applications should-
n’t surprise anyone who can remember the
ancient history of Java (almost nine years ago).
This is the application it was originally designed
for: providing a means for all sorts of consumer
devices and computers to communicate with
each other even though they’re based on all kinds
of different microprocessor chips, each with very
little memory space.

The future is bright for Java in these applica-
tions. While the efforts to create a specification
for real-time Java are ongoing, perhaps more slow-
ly and with more difficulty than may have been
hoped for, the use of Java as a near-real-time mon-
itoring tool is growing. There’s an impressive
trend toward equipment retrofits based on Java
and embedded servers. Organizations exist to
produce embedded Web servers and user inter-
faces for existing equipment. There’s also a move
toward server-side Java for embedded systems
that will allow some logic to be provided in Java
on the embedded computer. This includes such
things as protocol stacks that are specific to
industries such as SECS/GEM in the semiconduc-
tor industry, and LECIS in the pharmaceutical lab-
oratory and drug discovery industries.

So when someone mentions an applet, don’t
just think of the big guys. Think of the applets run-
ning from 8-bit microprocessors with memory
space of 128 K (or even smaller) that could hap-
pily be providing information access in the facto-
ries making those big 64-bit systems as well as the
many other things we use and enjoy in our daily
lives.

About the Author
Jim Redman is the president of ErgoTech Systems, Inc., a
company focused on developing Java applications and
toolkits for plant-floor automation. This includes links to low-
level systems and hardware, and also network links --
including CORBA support -- for enterprise distribution of
factory automation information. He may be reached at
JRedman@ergotech.com.

GUEST EDITORIAL

Jim Redman

CALL FOR SUBSCRIPTIONS

1 800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

Mail All Subscription Orders or
Customer Service Inquiries to:

EDITORIAL OFFICES
Phone: 914 735-7300

Fax: 914 735-6547

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

WORLDWIDE DISTRIBUTION by
Curtis Circulation Company

739 River Road, New Milford, NJ 07646-3048
Phone: 201 634-7400

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite 204
Solana Beach, CA 92075

Phone: 619 481-5928

SYS-CON
PUBLICATIONS

DEVELOPER’S

JOURNAL

SYS-CON Publications
CONTACT ESSENTIALS

SYS-CON Publications
CONTACT ESSENTIALS

PowerBuilder Developer’s Journal
http://www.PowerBuilderJournal.com

ColdFusion Developer’s Journal
http://www.ColdFusionJournal.com

VRML Developer’s Journal
http://www.VRMLDevelopersJournal.com

Secrets of the PowerBuilder Masters
http://www.PowerBuilderBooks.com

Java Developer’s Journal
http://www.JavaDevelopersJournal.com

Java Makes a Move Back –
into Embedded Systems

8 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Transforming
legacy assets into

Java services

JDJ FEATURE

by Bruce H. Cottman, Ph.D.

The Challenge of Java Integration
with Legacy Assets

Organizations are developing a new class
of electronic business applications, using
Java to capture new business logic. In some
cases these e-business applications ,have
gone beyond just successful deployment to
redefining the competitive landscape. Exam-
ples are package tracking, home banking,
travel services, automobile purchasing,
home shopping, customer support, billing,
global securities trading and publishing. The
driving forces behind these applications are
increased competition in growing markets
and the need to reduce costs in services and
support. Because e-business is a significant
part of the business image in competitive
markets, demand for higher performance
and reliability is continually increasing.

Successful e-business applications must
meet demanding performance, scalability
and reliability requirements that previously
have been found only on the mainframe. A
short list of required Java e-business server
capabilities includes multithreading, load
balancing, resource management, state per-
sistence, connection pooling and fault-
failover. Achieving any one of these capabili-
ties is a large development cost.

JavaSoft, along with leading partners like
IBM, are meeting the challenge of Java e-
business requirements with Enterprise Jav-
aBeans (EJB). The key capabilities of the EJB
framework are:
• E-business logic is packaged as a Java-

Bean component that executes within an
EJB server. The EJB server platform sup-
plies thread management, state persis-
tence and other enterprise capabilities to
the JavaBean. The e-business application
developer gains performance and scalabil-
ity from the EJB server platform facilities.

• The EJB server platform supplies data
access (JDBC), transactions (JTS), messag-
ing (JMS), directory (JNDI) and other fun-
damental services as standard Java inter-
faces. The e-business application develop-
er gains Plug and Play component software
development productivity by using tools
that support EJB service specifications.
Component software developer productiv-
ity, previously available only to the visual
JavaBean developer, can now be achieved
by the server-side Java developer.

A complete, well-defined set of interfaces
is a major strength of Enterprise JavaBeans.
The service interface limits the complexity

that’s visible to the application implementa-
tion while enabling the application to exploit
the full power of the distributed object sys-
tem. Server-side component services are
fundamentally new because in the past, the
integration of service-based capabilities
always had to be custom crafted. Without a
component framework such as EJB, there
was no way of predicting – other than empir-
ically – how the capabilities of services from
different vendors could be integrated. The
EJB server standardizes how the behavior of
one Java service interface will change when

SERVICE
BROKERS

SERVICE
BROKERS

SERVICE
BROKERS

9VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

another Java service interface is also being
used. Business logic and different service
interfaces become Plug and Play application
components (beans!).

Enterprise JavaBeans is a complete plat-
form for Java e-business applications. But
what about the world’s existing business
logic? Can we afford to build new e-business
applications that ignore existing production
systems? The answer, of course, is “NO!”

The most critical challenge facing Java
developers today is with integrating legacy
data and applications. The world’s informa-
tion technology (IT) investment (sometimes
referred to as legacy) is realized in mission-

critical business logic that controls such
critical systems as fund transfers, stock
exchanges, transportation scheduling, pay-
roll and the worldwide distribution of goods
and services. It’s estimated that there’s over
$5 trillion in IT assets that conduct the day-
to-day business of the world’s economy. In
1997 the U.S., Europe and Japan spent over
$600 billion on the maintenance and
upgrade of these IT assets.

The roadmap for legacy integration is
inherent in the specification of the EJB plat-
form. Access to legacy assets should be

accomplished using Java platform services
such as Java Database Connectivity for legacy
data and Java Transaction Service for legacy
transactional logic. By integrating through
Java platform services, legacy business logic
and data appear as native JavaBeans to the e-
business application developer.

Let’s explore the technical challenge of
transforming legacy IT assets into Java ser-
vices.

The Challenge of Transforming IT
Assets into Java Services

E-business applications are inherently
distributed and multitier. In a multitier dis-

tributed application, the logical architec-
ture is typically three-tier architecture, with
business logic separate from presentation
and data access logic. Mid-tier Java busi-
ness logic requires access to back-tier IT
assets that:
• Provide high performance throughout for

both small (one to hundreds of rows) and
large (thousands or millions of rows)
amounts of data

• Sustain high performance throughout
under peak concurrent user loads as well
as trivial user loads

• Maintain high availability greater than
99.9%

• Support centralized management and
administration using standard tools

• Use standard interfaces to reduce the
cost of development and maintenance

Java developers are discovering that
existing middleware is not designed to sup-
port hundreds or thousands of connections
from distributed business logic servers to
databases. For example, client/server mid-
dleware, such as ODBC, was designed to
connect a single resource-rich desktop
client to a database server. An entirely new
kind of middleware is required that can
manage large concurrent sessions loads of
an e-business application server.

A new breed of middleware must meet
the performance requirements of e-busi-
ness and it must also meet the rigid inte-
gration limitations of legacy IT assets. By
introducing a new tier, a middleware tier
between the e-business logic server and the
legacy asset tier, we have a platform to add
all the facilities that we need. A middleware
tier can enhance the legacy asset by adding
such facilities as load balancing, connec-
tion pooling, multithreading and distrib-
uted failover. I-Kinetics calls this middle-
ware architectural approach the Service
Broker.

A good Service Broker isn’t just a pass
through proxy for the Java service inter-
face. What looks like a simple implementa-
tion of a Java service interface may require
the Service Broker to coordinate the imple-
mentation of several features within the
limitations of a legacy interface. For exam-
ple, obtaining a connection to a legacy
application may appear straightforward.
However, if that connection is to be pooled,
load-balanced and encrypted, and to sup-
port a distributed two-phase commit, then
the Service Broker will have to implement
most of the distributed connectivity man-
agement facilities for the legacy asset.

Adding new capabilities is a significant
advantage of a Service Broker architecture.
For example, I-Kinetics DataBroker imple-
ments the JDBC service with additional
capabilities such as multithreaded data
streaming, load balancing and connection
pooling. You can expect Service Broker
architectures to be able to offer the best
JDBC 2.0 extension implementations for
transaction resource management, batch
updates and backward and forward
scrolling result sets. Additionally, SNMP
management, query caching, messaging
and object persistence are advanced capa-
bilities a Service Broker can offer across
JDBC, JTS and JMS services.

The impact of using a Service Broker on

the full life-cycle cost of the e-business
application can be enormous. For legacy
system integration projects, 40 to 70% or
more of the development cost may be elim-
inated because:
• A Service Broker transforms the legacy

data structures into standard Java data
formats.

• A Service Broker offers standard applica-
tion service interfaces that are widely
supported by tool vendors. A Java devel-
opment tool can be used for the com-
plete development life-cycle -- from pro-
totyping to full deployment of the multi-
tier e-business application.

• Complex capabilities such as multithread-
ing, opportunistic concurrency, load bal-
ancing, connection pooling, partitioning,
recoverability, failure isolation and
administration are introduced by the Ser-
vice Broker without any implmentation
cost or complexity in the business logic.

Let’s explore a practical example of
accessing mainframe data from Java with
several different approaches, including the
Service Broker approach.

Comparison of Different Mainframe
Data Access Solutions

One of the most significant data access
challenges facing e-business application

developers today is accessing mainframe
data. Access to mainframe data can create
significant business opportunities, but only
if a sufficient business case can be made.
• Lower life-cycle costs – You need to

retain mainframe business logic while
moving new e-business application load
off the mainframe to meet growing
demand.

• Lower operational costs – Equipment
support and staff training costs of termi-
nal user interfaces (i.e., green screens)
isn’t competitive with Web-based
browsers.

• Increase revenue – You can deploy e-
business services that directly increase
your market share at the expense of your
competitors.

There seems to be a befuddling array of
choices when it comes to which solution to
use to access mainframe assets. However,
your requirements are timeless as they
exist for any system deployed for a busi-
ness revenue-critical enterprise environ-
ment. These requirements are reliability,
performance, scalability, security, legacy
support, multiplatform support, manage-
ment and low development and mainte-
nance costs. There are a multitude of solu-
tions for integrating mainframe assets,
most of which can be identified as being in

one of three general categories:
• Terminal emulation middleware
• Indirect access gateway middleware
• Direct access Service Broker middleware

IBM’s Information Management System
(IMS) provides On-Line Transaction Pro-
cessing (OLTP) for much of the world’s crit-
ical business and commercial service appli-
cations. In existence for over 25 years, only
CICS surpasses IMS in managing the world’s
business-critical transactional data. IMS is
an ideal testbed for comparing the capabil-
ities of terminal emulation, gateway middle-
ware and Service Broker middleware.

The business logic for the IMS testbed
consists of a common Java application that
invokes each different middleware solution
to extract 100 rows of IMS data. The Java
application and middleware is hosted on a
Solaris 2.6 Ultrasparc platform (e-business
server). The IMS application and data are
hosted on an IBM OS/390 mainframe. The
Java code differs only in the call syntax
required by the specific middleware inter-
face. JDK 1.1.6 with the JIT enabled was
used for all configurations.

The performance data shown in Table 1
consists of the average of a sample size of
five measurement runs. Column 2 (Process
Launch), is the amount of time needed to
launch and initialize the business logic
process. Column 3 (Connect) is the amount
of time needed to establish a connection to
IMS. Column 4 (Execute) is the amount of
time needed to execute the transaction
through the middleware and Column 5
(Extract) is the amount of time needed to
extract the IMS data from the data block
returned by the transaction query. Column
6 (Total Time) is the total clock time need-
ed to execute all aspects of the Java appli-
cation and middleware on the e-business
server. The individual times of Process
Launch, Connect, Execute and Extract
account for over 90% of the Total Time. Col-
umn 7 is the total number of bytes trans-
ferred from the OS/390 mainframe tier to
the e-business server. Column 8 is the
amount of OS/390 processor CPU con-
sumed to execute the transaction.

If your mainframe applications are
mature and you just want to overhaul the
interface, not add any new business logic,
then you may want to consider using termi-
nal emulation middleware. The terminal
emulation (or screen scraper) approach
doesn’t require any installation of new soft-
ware on the mainframe. However, terminal
emulation has distinct disabilities when
used as e-business middleware. The main-
frame host must manage a virtual terminal
session as well as add terminal manage-
ment control code data in the data stream
for each transaction. All this terminal emu-

http://www.JavaDevelopersJournal.com10 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 3 1999

Figure 1: The Enterprise JavaBean framework

JDBC
Data Access &
Single Resource
Transactions
Multiple Resource
Transactions

Messaging

Directory
& Naming
EJB has
CORBA

JTS

JMS

JNDI

JIDL

Desktop

Visual
JavaBeans EJB Business

Logic Components EJB Server

Data

Business Logic

CORBA Objects

Enterprise JavaBeans Server Legacy Assets

Figure 2: The Service Broker transforms legacy assets into standard Java services.

JDBC Service
Broker

Service
Broker

JTS

JMS

JNDI

JIDL

Desktop

Data

Business Logic

Enterprise JavaBeans Server Legacy Assets

Legacy appears as
a Java Service

11VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

EnterpriseSoft
www.enterprisesoft.com

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal12

lation processing and control is wasteful as
it goes unused by the mid-tier business
logic.

For the IMS testbed results given in
Table 1, the terminal emulation middleware
consumed 85 msec – 280% more than the
Gateway and 400% more than the Service
Broker solution. In terms of capacity plan-
ning, terminal emulation will need 300% or
more equivalent MIPS to service the same
user load as a Service Broker solution.
Additionally, any 3270 screen format
change will require code maintenance of
each affected screen-scraper script. You
can expect high maintenance costs, low
performance and increased load on the
mainframe with a terminal emulation solu-

tion. At a current cost of $10,000 per main-
frame MIP, terminal emulation is impracti-
cal for the high concurrent user loads sus-
tained by e-business systems.

The Gateway middleware for accessing
IMS was the IBM DB2 Connect ODBC driver
on the Java platform connecting to DB2 on
the mainframe. DB2 acts as a gateway by
enabling a DB2 procedure to access IMS.
Two different Java platform configurations
were used:
1. The Java application invoked a CGI/Perl

script which in turned invoked the ODBC
driver. The Perl script “extracted” the
returned IMS data from the ODBC driver
as an array of strings. The array wasn’t
passed back to the Java application and if

it had, it would have resulted in a larger
Extract time.

2. The Java application used the Javasoft
JDBC/ODBC bridge. The JDBC/ODBC
bridge was invoked directly and data
returned directly to the Java application
using the same extraction logic as the
Terminal Emulation and Service Broker
middleware configuration.

The performance of the CGI/Gateway
configuration is at a large disadvantage
because of the process launch time of 200
msec. However, most of the process launch
time can be almost completely eliminated
by using FastCGI, which keeps the CGI
process in memory.

The JDBC/ODBC Connect and Extract
performance was better than CGI/Perl for
Gateway middleware. In this case, Java
string manipulation and foreign function
call facilities matched Perl. Perl’s string
manipulation facilities are famous for being
able to match or sometimes exceed C/C++
code performance. Both were equal in their
use of mainframe resources as they both
shared the ODBC/DB2 gateway to IMS. The
developer productivity advantages of Com-
mon Gateway Interface (CGI) using Perl and
other scripting languages has been
matched and exceeded by the developer
productivity found with Java servlets. JDK
1.2 performance improvements in string
manipulation and JIT technology will fur-
ther increase Java development and run-
time advantages. Given the performance
advantages of Java servlets over CGI, it
becomes easy to understand why server-
side Java is so quickly replacing CGI as a
business logic platform.

The Service Broker configuration shown
in Figure 3 consists of the I-Kinetics Data-
Broker and the Neon Systems Shadow
Direct for IMS. DataBroker features a com-
plete JDBC driver. The DataBroker is the
Service Broker that directly interfaces to
Shadow Direct – an installed service run-
ning under OS/390 that integrates directly
with the IMS Transaction Manager.

Figure 3: The Service Broker three-tier server architecture for IMS.

Business
Logic JDBC DataBroker Shadow

Direct

Business
Logic Tier

Middleware Tier Legacy Asset Tier

OS/390 Host

IMS TM

IMS DB

JDBC Statement Object

JDBC ResultSet Object

SQL92 Stored Procedure Syntax

Select all parts

MVS Logical Unit

IMS Application Name

Data Map specification

ResultSet rset = stmt.executeQuery(
"call broker_ims ('PART','IMSLU62','*',
’MAP (NAME (PARTLIST) FIELDS (*) FORMAT(VERT))')");

Figure 4: Service Broker JDBC syntax for accessing IMS data
using DataBroker and Shadow Direct for IMS

Table 1: Performance results for different middleware access to 100 rows of IMS data

Process Total Total OS/390
Middleware Launch Connect Execute Extract Time Data CPU
Solution (msec) (msec) (msec) (msec) (msec) (Bytes) (msec)

Terminal Emulation 21 500 – 410 940 11,700 85

CGI/Gateway 200 350 190 120 870 7,600 30

JDBC/ODBC/Gateway – 310 200 75 600 7,600 30

Service Broker – 12 23 39 81 3,500 21

13VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Tidestone
Technologies

www.tidestone.com/javaspreadsheets

Java DEVELOPER’S Journal14 • VOLUME: 4 ISSUE: 3 1999 http://www.JavaDevelopersJournal.com

The first immediate performance
advantage realized with the Service Bro-
ker approach is the Connect time of 12 ms
for the IMS testbed. The DataBroker auto-
matically organizes all database connec-
tions into a connection pool. When a
requested database connection is already
available in a connection pool, it will be
reused.

For e-business transactions with small
Execute and Extract costs, eliminating fixed
overhead Process Launch and Connect
costs are essential to achieving high perfor-
mance. For Insert/Update/Delete transac-
tions with an Execute time of 10 ms or less,
a Connect time of 300 ms will heavily tax
the peak transactional throughput. Reduc-
ing Connect time with connection pooling
can achieve significant increases in perfor-
mance and scalability.

Other performance advantages real-
ized with the Service Broker were with
Execute and Extract performance.
Because DataBroker is directly integrated
with Shadow Direct and Shadow Direct
directly accesses the IMS transaction
manager data queues, the resulting Exe-
cute performance is very high. Additional-
ly, with Shadow Direct compressing the
data stream the amount of data transmit-
ted (3,500 bytes) is dramatically smaller
than with Terminal Emulation (11,700
bytes) and Gateway (7,600 bytes) middle-
ware configurations.

The Java code for accessing IMS using the
Service Broker is shown in Figure 4. IMS
applications are accessed using a SQL-92-
compliant stored procedure call, broker_ims,
invoked using the JDBC statement interface
method executeQuery. The broker_ims
stored procedure call includes parameters
that specify the IMS application to execute
and result set data formatting. From this
example, it is easy to grasp the power of
using Java service interfaces, such as JDBC,
to access legacy assets, such as IMS.

The Right Way: Transforming
Legacy Assets into Java Services

The Service Broker architecture pro-
vides a path for the enterprise to scale up
existing client/server applications to
high-performance, high-capacity multitier
e-business applications. The enterprise is
protected against being locked into a sin-
gle platform or vendor middleware solu-
tion. The enterprise IT infrastructure
decision maker can depend on Java ser-
vices, such as JDBC and JTS, to be essen-
tial standard elements of the Java and
Enterprise JavaBean platform. The Ser-
vice Broker provides a complete migra-
tion from current IT systems to future IT
systems, overcoming the drawbacks of
other integration strategies.

An important part of the Java service
legacy integration strategy is for the
software industry to create Java Service
Brokers for the world's $5 trillion of IT
assets. You can expect the Java software
vendor community to supply Service Bro-
kers for a wide range of legacy assets. Cur-
rently, you can access almost any main-
frame asset, such as ADABAS, CICS, DB2,
IMS, IDMS and VSAM, as a JDBC data
source with the I-Kinetics DataBroker. IBM
has announced the access of their popular
messaging middleware, MQSeries, as a JMS
service. Of course, the leading transaction
processing vendors, such as BEA and IBM,
will be offering JTS for their transaction
monitors.

A good Service Broker will offer high-
performance and scalability features to
complement a high-capacity Enterprise
Java-Bean platform. Building your own
Service Broker is a difficult and expensive
experience. Seek out and research existing
Service Brokers for your current legacy
integration needs. With Plug and Play
Service Brokers delivering JDBC, JTS
and JMS services, you can focus on the
critical tasks of developing new e-business
applications.

References and Resources:
• “Solving the Data Inter-Operability Prob-

lem Using a Universal Data Access Bro-
ker,” Mike Higgs & Bruce Cottman. IEEE
Data Engineering Bulletin, September
1998.

• “Introducing DataBroker: Standards
Based Data Access for the Enterprise,”
Mike Higgs, Netscape ViewSource 1997.

• “DataBroker Version 6: A Technical
White Paper,” I-Kinetics, September
1998.

• “Universal Data Access,” Bruce Cottman.
Java Developer’s Journal, April, 1997.

• The Essential Distributed Objects Survival
Guide, Robert Orfali, Dan Harkey and
Jeri Edwards. John Wiley & Sons, Inc.,
1996.

• Client/Server Programming with JAVA and
CORBA, 2nd ed. Robert Orfali and Dan
Harkey. John Wiley & Sons, Inc., 1998.

About the Author
Bruce H. Cottman is the president of I-Kinetics, Inc.
Since founding I-Kinetics in 1991, Bruce has
focused on solutions for transforming legacy into
high-performance component software for large
distributed systems. He holds S.B. and S.M.
degrees in physics from the Massachusetts Institute
of Technology and a Ph.D. in physics from
Rensselaer Polytechnic Institute. Bruce can be
reached at bruce.cottman@i-kinetics.com, or at
his Web site, www.i-kinetics.com.

bruce.cottman@i-kinetics.com

Vote Before
May 15, 1999
and be part of
Java History

www.JavaDevelopersJournal.com

Vote Before
May 15, 1999
and be part of
Java History

www.JavaDevelopersJournal.com

15VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Intuitive
www.optimizeit..com

Java DEVELOPER’S JournalJava DEVELOPER’S Journal16 • VOLUME: 4 ISSUE: 3 1999 http://www.JavaDevelopersJournal.com

Distributed object computing in Java
has become increasingly popular as more
complex products are written using a multi-
tier architecture. A number of products and
protocols are available for facilitating com-
munication, and many developers have
trouble deciding which ones to use in a
given situation. Many of the communica-
tion methods work well together, and each
has its strengths and weaknesses. In this
article I’ll discuss two of the most popular
methods, CORBA and servlets. Both are
useful for distributed computing, and they
complement each other well.

What Is Distributed Object
Computing?

Distributed object computing is devel-
opment involving communication between
two or more independent modules of an
application. Usually, it involves communi-
cation between a client and a server – for
example, a Java time-tracking application.
This application would have a client side
written as a Java applet and a server side
that stores and retrieves information from a
database. Users could enter the hours they
spent on a specific project on the client
side, and that information would be trans-
ferred to the server side and stored in the
database. Likewise, if they wanted to
retrieve previously stored hours, their
request would be passed to the database
and the information would then be passed
back to the client side, generating a report
dynamically.

This application is a good example of a
multitier architecture. The client communi-
cates with the server, and the server com-
municates with the database, creating three
different layers to the application as well as
a need for a communication protocol
between each set. Since they have only the
two modules, client/server applications are
a special case of multitier applications.
Communication between the server and
the database can be done directly (using
JDBC or a similar API), since the database is

usually on the same intranet as the server
module. However, the client and server
modules not only could be on different
intranets, they could also be separated by a
firewall or another divider. Therefore, com-
munication between them can be difficult.
In order to communicate, the application
must assemble information on one side,
encapsulate it and send it to the other side,
which must retrieve and decipher it. This is
the problem distributed computing proto-
cols and products are designed to solve.

What Is CORBA?
CORBA stands for Common Object

Request Broker Architecture. The Object
Management Group (OMG) is the body
responsible for creating and maintaining
the CORBA specifications. CORBA includes
specifications for a language to define
objects, a protocol for exchanging informa-
tion and a protocol for passing objects over
the Internet. Several companies have taken
these specifications and developed imple-
mentations of CORBA for Java. Inprise Visi-
Broker is the leading commercial imple-
mentation, and Sun recently released Java
IDL as a core API as part of the Java 2 plat-
form release. There are also implementa-
tions available for different languages and
platforms.

The language CORBA uses to define
objects is the Interface Definition Language,
or IDL. Once an object is defined using IDL,
it can be translated to a specific language
such as C++ or Java. This object can then be
used by both the client and server modules
as a native object. The object is passed
between the client and the server using the
Internet Inter-ORB Protocol (IIOP), a proto-
col for translating the General Inter-ORB
Protocol (GIOP) for use with TCP/IP. In
other words, IIOP is the protocol used for
transferring these CORBA objects from one
side to the other over the Internet.

The Object Request Broker (ORB) is the
active part of a CORBA implementation. It
receives a request for information from one

module of the application, finds an imple-
mentation of the object associated with
that information and handles the transfer
between modules. For example, in the time-
tracking application above, the applet code
might call a method that is actually imple-
mented in the server. When the method is
called, the ORB is given the request, passes
any parameters of the method to the server
side, executes the method and sends the
return value back to the client. This is all
transparent to the client code, so that writ-
ing a client application using CORBA is not
significantly different from writing a normal
Java application. The CORBA specification
includes ORB interoperability, guaranteeing
that an object passed to one vendor’s ORB
can be understood by any ORB written by
any other vendor. A simple example of the
client server and IDL code for an applica-
tion can be seen in Listing 1.

CORBA is an excellent protocol to use
when the goal is to pass information trans-
parently between the client and server.
Many of the implementations exhibit high
performance and are easy to use and incor-
porate into existing applications. The guar-
antee of ORB interoperability makes it easy
to switch implementations and add code or
JavaBeans from other sources to existing
CORBA-compliant code.

What Are Servlets?
Servlets are Java modules that can be

executed by a Web server. They are similar
to CGI scripts, but have several significant
advantages. First of all, they are run within
the same process as the Web server, while
CGI scripts are executed in separate
processes. This makes servlets faster and
more efficient than scripts. Second,
servlets are written in Java, so they are
immediately portable to multiple platforms
and have the range and flexibility of the full
Java language. This means, for example,
that a servlet could also use the JDBC API
to access a database, or even use CORBA to
access a different server. CGI scripts are
generally written in platform-specific lan-
guages or compilations of languages, mak-
ing them hard to support and less flexible.
Finally, the Java Servlet API allows easy
access to a full range of information about
the request, even allowing objects to pass

CORBA vs Servlets:
What to Use Where
Getting started in distributed object computing

CORBA CORNER

by Rachel Gollub

17VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Inetsoft
www.inetsoftcorp.com

http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal18 • VOLUME: 4 ISSUE: 3 1999

between the client and server side. The
most common uses of servlets are to drive
dynamic Web sites and to produce dynamic
HTML within a Web-based application.

Servlet objects are usually passed using
the Hypertext Transfer Protocol (HTTP).
HTTP, the most common Internet transfer
protocol, is supported by all Web browsers
and servers. It’s specifically designed for
transferring Hypertext content over the
Internet, and is specialized for doing so.
This means that while servlets are extreme-
ly efficient for producing and transferring
dynamic HTML, they are less efficient for
transferring objects between an applet and
a server. For comparison, they are faster for
object transfer than some implementations
of CORBA, but slower than most.

Servlet implementation depends main-
ly on the Web server chosen to incorpo-
rate them. Sun has released a product, the
Java Web Server, that natively supports
servlets. A number of products, including
one from Sun, add servlet support to
existing Web servers, so most common
ones can now support servlets. A com-
plete list of supported servers is available
from the JavaSoft home page. Once you’ve
written a servlet and compiled it using the
JDK and the Java Servlet API (or the Java
Servlet Development Kit), you put the
class file into a specific servlet directory
in the Web server hierarchy and restart
the server. At that point the servlet is
ready for use. A simple example of a
servlet can be found in Listing 2.

Which Should I Use?
Servlets and CORBA both have their

strengths and weaknesses, and which is
appropriate depends on the situation.
CORBA is optimized for transferring
objects transparently, while servlets are
designed more for server-side processing
resulting in dynamic HTML.

In the time-tracking application listed
above, there are two functions that happen
with reasonable frequency: storing informa-
tion to the database and generating
reports. In the first case, the application
should pass data from the client to the
server and store it in the database. This is
simple object passing from an applet to a
server application, which CORBA does very
efficiently. The same process could be done
with servlets, but it would require more
coding and maintenance to work efficiently,
and would generally have poorer perfor-
mance. The second case is more complicat-
ed – are the reports in HTML or in Java? If
HTML, then the application is passing a
request to the Web server and expecting
dynamic HTML in return, something that
servlets do most effectively. Again, the
same process could be done using CORBA

(pass the request to the back end using
CORBA and use that to write an HTML file
that can then be displayed or downloaded
by the client), but in this case CORBA
requires more coding and more mainte-
nance, and has poorer performance. How-
ever, if the report front end is in Java,
CORBA again becomes a better answer.

In the case of a Java front end and HTML
reporting, new questions come up. Each
method is useful in its area, but there’s a lot
of overhead involved in implementing two
different communication methods in one
application, particularly a small one. Some
other considerations are budget and mem-
ory requirements. Running a client-side
applet, an ORB, a server–side application, a
Web server and possibly a servlet plug-in
can be expensive and memory intensive
enough to demand a decision between the
two methods. Until recently, servlets tend-

ed to be the cheaper alternative, since kits
for running servlets with the major Web
servers can be downloaded free. The intro-
duction of Java IDL, however, has generated
a CORBA option that is also distributed
free, so either one is now a reasonable
choice on a small budget. In this case, the
best way to make a decision, if you can use
only one method, is to plan to optimize the
application for one method or the other.

One possibility is to change the front
end for the application entirely to HTML.
Most time-tracking applications have rea-
sonably simple front ends and could be eas-
ily converted to HTML. This would elimi-
nate the need for CORBA, since all pages
are now dynamic HTML and will be most
efficiently served by servlets. Conversely,
you might decide to use a different report-
ing tool that uses a Java front end, eliminat-
ing the need for any HTML, which then
allows you to use CORBA most effectively.
Finally, you might decide to leave both the

way they are and do some performance
testing to see whether it is more efficient to
use CORBA for your HTML or servlets for
your applets, since these performance mea-
surements are very much dependent on
CORBA implementation and code specifics.
Since each method can be used to duplicate
the other one, once you have chosen the
one with the minimum loss of performance,
you can standardize on that method.

Larger applications, on the other hand,
benefit greatly from using more than one
method of communication. Performance
and scalability are critical issues for large
applications, and using more than one
method can assure that the application is
optimized for maximum performance.
CORBA and servlets don’t interfere with
each other at all in an application, and can
be used side by side in the same code with-
out any problems. For example, a Web site
management application may let the user
save dynamic HTML to a database and then
view it. CORBA could be used to send the
information to the database and a servlet
could then be invoked to retrieve the infor-
mation, do any dynamic substitution neces-
sary and display the final dynamic Web
page. Using both can be a distinct advan-
tage over having to optimize an application
for only one method.

Where Can I Get More
Information?

More information on CORBA, including
CORBA, IDL and IIOP specifications, is avail-
able at www.omg.org/, the OMG home page.
There is also a CORBA home page at
www.corba.org/ and JavaSoft’s Java IDL is
available for download from the Products
and APIs section of the Java home page,
java.sun.com/. Information on servlets, the
Java Web Server and the Java Servlet API is
available from the servlet home page at
jeeves.javasoft.com/. This page includes a
list of products available from other ven-
dors to support servlets on a number of
servers.

About the Author
Rachel Gollub is a senior engineer/architect at
Imparto Software Corporation. She started
programming in Java (then Oak) in 1995, and
was hired by JavaSoft, where she worked until
1997. She contributed some of the demo applets
shipped with the JDK, and made contributions to
the Java Web Server and the security classes.
Rachel can be reached at rachel@imparto.com.

rachel@imparto.com

“CORBA is an
excellent protocol

to use when the
goal is to pass
information

transparently
between the client

and the server.”

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

19VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ParaSoft
www.parasoft.com

http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal20 • VOLUME: 4 ISSUE: 3 1999

Welcome to your monthly dose of con-
troversy – the part of the magazine where I
ask you to push back the keyboard, stop
debugging that Java class that has been
bugging you for the past couple of hours
and get your shot of caffeine as I invite you
to take a look at this crazy Java universe
through the eyes of a British company.

It’s been an interesting month for us
here in Scotland, so I have a lot to tell you.
As usual, we’ll contrast our findings to a
personality trait. This month I think we’ll
look at gullibility. That’s one that all of us at
some point in our lives have been subject-
ed to. Whether we admit it or not is a trait
for another month, so let’s not get ahead of
ourselves.

What I’m about to say may come as a bit
of a shock to some of you. It appears that
something rather exciting is about to hap-
pen. We’re not too sure what it is, but I am
reliably informed by the BBC and CNN that
it will be major. What am I talking about?
The end of the world, of course. The end of
civilization as we know it. The millennium is
fast approaching and we’re down to days as
opposed to years.

Since every other journalist under the
sun has written about it, I thought it was
about time I threw my two cents in about
the whole thing. As with any good Clinton
or Michael Jackson story, the millennium
bug is full of complete misinformation. The
only consistent fact is the name of the prob-
lem: Y2K. The computing industry, true to
form, has assigned yet another acronym to
the list of thousands we already manage.
No wonder public perception is of doom
and gloom if we shroud the problem in our
own tech-speak!

But There’s Always Hope
I’d seen so many contrasting and scare-

mongering reports that I’d given up hope
on the world as a whole. Had the whole
place gone mad? Reports of planes drop-
ping from the sky, buildings falling over,
governments crashing and wars taking
place were all going to be attributed to a
simple date problem. Fortunately, my sani-
ty was restored when I read a very informa-
tive and realistic article in the New Scientist
Journal that profiled what the world is real-

ly going to be like when we wake on Janu-
ary 1, 2000. And here’s where I’ll let you all
into a wee secret: the sun will still be shin-
ing, the earth will still be revolving...and
Jerry Springer will still be broadcasting!

Don’t get me wrong – I know there will
be some problems we’ll have to deal with,
but on the whole I believe that the majority
of the world’s population will indeed be
very disappointed with the turn of the year
2000. It’s not going to be the big bang we’re
all expecting. I think the biggest shock will
be to the companies that – for reasons best
known to themselves – hired the cowboy
consultants who are charging £20k a day for
the 31/Dec/1999 to 1/Jan/2000 period, only
to discover that the problems still exist.
What’s confusing me is just what these peo-
ple expect to achieve.

For example, let’s assume that they’re
Y2K experts. Let’s further assume a prob-
lem does occur. Do they expect to fix it then
and there? Because if they haven’t been
able to fix it beforehand, what are the
chances of their achieving success on the
given night? Personally speaking, I feel that
this sort of behavior is taking advantage of
computer-illiterate companies. Some of you
will say they deserve it, or even So what?
Well, there’s that attitude, but that really
doesn’t do the industry a whole lot of good.

We all know the basic foundations for
the Y2K problem: the saving of disk space
when dealing with dates, and the year pre-
cision. Back in the 1960s it was assumed
that their software would not still be run-
ning in the year 2000. Which, I suppose, you
can’t blame them for. If I were to ask if you
thought the class you just wrote would still
be running in 30 or 40 years’ time, how
many of you would say yes?

Not that many, I suspect. Why? Well, we
probably think development languages will
have moved on so much by then that there
will be no place for a lonely Java class to
exist, let alone still provide a useful func-
tion. This is another great debating point,
and one that I welcome all e-mail on.

(Speaking of debating points, let me
thank you all for the response to my article
[JDJ Vol. 3, Issue 12] on company loyalty –
I think I touched a nerve there. I had put for-
ward the notion that employees aren’t as

loyal to companies as they were once. This
sparked a flurry of e-mail from readers
accusing me of not seeing the “two-way
street” of loyalty. Of course I see the two-
way street, where the company also shows
loyalty to the employee. There are many
stories of people who have given the major-
ity of their working lives to a company only
to be dumped when the going got tough. I
appreciate this, and as I said in my article,
it’s the bigger companies that have made it
sour for us smaller companies. I enjoyed
debating the issues with you. So keep the e-
mails coming!)

Back to our Y2K issue. Assuming our
Java classes will see it to the next millenni-
um and even past it to the next one, in some
museum of computing through the ages will
they cope with the change? Well, Sun has
assured us that Java is indeed Y2K compli-
ant – assuming you’ve been a good devel-
oper and stuck with the standard date
classes within the JDK. If you haven’t,
you’re on your own, which is fair enough.

Just for Fun…
Let’s assume that there was a problem

with the fundamental date classes that
meant a wee problem on Hogmanay (New
Year’s Eve) 1999. How serious would this be
to fix, compared with the problems facing
the Y2K developer now? Well, assuming a
problem existed in the java.util.Date class,
for example, all that would be required
would be for Sun to fix it and reissue the
class file or virtual machine to the world at
large. All we’d have to do is copy over the
new class file and restart. That would be it.
No recompiling required on our behalf. This
would be the miracle cure that would
require nothing more than a simple copy.
That’s the power of Java.

But this ease of upgrading or bug fixing
can be applied to anything in the Java uni-
verse. That’s one of the advantages of hav-
ing a good class design and a good solid
object structure. The ability to swap a bad
module for a good one without disrupting
the rest of the system is indeed a powerful
one. For this reason, I believe that the Y2K
problem is indeed a special time.

It’ll probably be the last time we see a
major problem on this sort of scale. If any-
thing like this pops up in the future, we can
take refuge in the fact that for us to fix a

‘Is the End Nigh?’

STRAIGHT TALKING

It better be – we’ve paid good money for it
by Alan Williamson

21VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

DevelopMentor
www.develop.com

• VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

small fundamental component in the sys-
tem won’t require a lifestyle change.

Of course, this is assuming that we’re
still around to enjoy the turn of the century.
While I was researching the material for
this article, I stumbled across the origins of
dates and calendars. I also came across
some of the more doom and gloom predic-
tions about this time of the century and I’ll
share some of my findings with you.

For a start, we can attribute the basic
calendar to the early Egyptians. At one time
they were managing up to three calendars
at once, since each one was failing at given
times of the year. The basic numbering of
our years came from the biblical event of
the birth of Jesus Christ. Hence the “BC”
notation for describing years before the
year 0. But I discovered a number of
sources that point to the fact that Jesus
may have been born closer to 75 AD, and
around October rather than December,
which is when we traditionally celebrate it.
They can ascertain this by trying to figure
out when the bright star – which supposed-
ly guided Mary and Joseph to the stable –
would be that high and that bright.

It’s always amazed me that there was
once a time when someone said; “Okay, this
is now year 0, agreed?” Can you imagine
being that decision maker? Talk about
responsibility! So the fact that we’re coming
up to the year 2000 is more of a numerical
fluke than some religious destiny.

Another man’s name that’s popping up
frequently at this time of the year is that of
our old French friend Nostradamus. If
you’ve never heard the name, or even seen
the movie, Nostradamus was a sixteenth-
century prophet who seemingly predicted
the world wars and a number of other
notable events throughout history. The
problem is that Nostradamus wrote his
prophecies with much of the same vague-
ness as the Bible – and look at how many
interpretations THAT document has had!
But one of his most shocking predictions is
coming up, apparently this year.

Nostradamus has predicted that the
King of Terror will be coming in the seventh
month of 1999 and will either destroy or sig-
nificantly damage the world as we know it.
Again, this is all so vague. Some believe it
will be a meteor, while others maintain it’s a
nuclear war. The translation of the original
documents is also open to debate, as the
seventh month can mean either July or Sep-
tember. To join in or listen to the debates,
join the alt.prophecies.nostradamus news-
group at www.liquidinformation under a
Nostradamus search.

What can we learn from this? Well, I
wouldn’t go signing that huge loan agree-
ment just yet on the basis that the world
might not be available for you to start mak-

ing the repayments. But I wouldn’t com-
pletely dismiss it. Let me tell you a wee
story that scared the living daylights out of
us. We’ve been experiencing some serious-
ly bad storms here in Scotland. I was taking
some time out from the keyboard, and we
started chattering about Nostradamus and
his predictions. I looked out, noticed the
trees bending at an unbelievable angle and
made the comment, “You know with all
these storms, maybe this is the beginning
of Armageddon.” As soon as I had the last
word out, the complete power for the
whole village went off. We were standing in
darkness, and we all just looked at each
other in disbelief at the potential timing of
those fateful words. Spooky!

On that note, I think we’d better wrap
this article up before I encourage any fur-
ther bad karma. Before I close, let me give
you this month’s recommended reading.

Recommended Reading
The books I love reading are the ones

that tell stories of the rise – and sometimes
fall – of large corporations. I was given a
book, Insanely Great, penned by Steven
Levy, that charts the rise of Apple comput-
ers and how Apple relied on the very fact
of being Apple in the early days. He talks
about how great it is to own an Apple, and
there’s a bit in the book where Levy admits
that being an Apple devotee isn’t without
its costs. We all know Apple devotees –
people who, for reasons non-Mac users
can’t fathom, believe that the only real
computer is an Apple. According to Levy,
it’s because there’s safety in numbers. In
the early days the marketing of Apple sold
little more than the reality. Therefore, for
the buyer not to feel isolated he had to
maintain the momentum of the Apple mar-
keting people and gloss over the problems
that hindered many of the early Apple
machines to his colleagues, friends and
family. It was like being a member of an
elite club, where the golden rule was never
to mention the failings. You loved your
Apple, worms and all. It’s an entertaining
book, and you’ll chortle at some of the
information.

Now I’m going to prepare my nuclear
bunker in preparation for the end of the
world. If it hasn’t happened by the time
next month comes round, I’ll be back!

About the Author
Alan Williamson is CEO of n-ary Ltd., a Java
consulting firm with offices in Scotland, England and
Australia. They specialize solely in Java at the server
side. Alan is the author of two Java Servlet books
and has contributed to the 2.1 Servlet API. He can
be reached at alan@n-ary.com (www.n-ary.com).

alan@n-ary.com

GET
YOUR
OWN!

GET
YOUR
OWN!

GET
YOUR
OWN!

$3999one
year

two
years

$6999

1800-513-7111
$69 one year Canada/Mexico

$99 one year all other countries

12 issues

24 issues

or subscribe online for faster service
subscribe@sys-con.com

Subscribe Today and receive
“JDJ Digital Edition” FREE!

save
$30!
save
$10!

23VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

KL Group
www.klg.com

24 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

In recent days, CORBA has fast become
a standard for the development of distrib-
uted applications. A CORBA application
may consist of one or more CORBA server
objects and many clients who connect to
these servers. A CORBA server object
makes itself available to the client by regis-
tering with the CORBA Naming Service or a
CORBA Trader Service. A client locates the
desired server object on the network by
using this Naming or Trader service. Once
the server object is located, the client
receives a reference to it. Using this refer-
ence, the client can invoke methods on the
server object and carry out its desired
work. Thus it’s the client that usually makes
use of server facilities; the server simply
returns the results of method invocations
to the client. However, in some situations, it
may be necessary for the server to invoke a
method on the client object. For example,
the server may like to notify the client of
the occurrence of a certain event on the

server or the completion of a processing
job requested by the client. This method of
invocation on the client is called Callback.
CORBA specifications allow Callbacks on
clients. This article discusses the imple-
mentation of CORBA callbacks using Java.

CORBA specification is language-neutral
and thus both client and server programs
can be implemented in different languages
as selected by the programmer. To imple-
ment Callbacks, a client must pass a refer-
ence of itself to the server. The server is
responsible for storing such references to
different client objects and calling methods
on the appropriate client as and when
required. The server must store these ref-
erences in a language-neutral format. Thus
a proper CORBA data type should be used
for storing such references. This article

uses the example of a traffic light controller
to discuss the implementation of CORBA
Callbacks using Java. Java has been used as
the implementation language for both
client and server applications; however,
any other language of choice may be used
for the implementation.

The traffic light controller application
design consists of a traffic light controller
object and several traffic light objects (see
Figure 1).

Each traffic light object, when created,
registers itself with the controller. The con-
troller stores the reference to each regis-
tered object. The controller object acts as a
CORBA server that registers itself with the
CORBA Naming Service. A traffic cop object
that wishes to control the lights at a partic-
ular junction locates the controller object

by P. G. Sarang

Using a
traffic light

controller
can help guide
your callbacks

JDJ FEATURE

IN CORBACORBA
CallbacksCallbacks

25VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

by looking up the CORBA Naming Service
for the desired name. Once the controller is
located, it’ll retrieve the number of lights
that the controller is currently managing.
The user interface of the cop application
shown in Figure 2 displays the panel for
each registered traffic light.

Using these panels, the cop sets the
states (colors) of the various lights and

requests appropriate changes to the con-
troller. The controller, in turn, scans
through the list of registered lights and
requests the lights to set the desired state
(color) by calling a method on each of the
light objects.

CORBA IDL
The development of a CORBA applica-

tion begins by writing Interface Definition
Language (IDL) code. The CORBA IDL for
the traffic lights application is shown in
Listing 1.

The module traffic defines two inter-

faces – TrafficLight and TrafficCoordinator.
The TrafficLight interface defines CORBA
traffic light objects while the TrafficCoordi-
nator interface defines the CORBA coordi-
nator interface.

The TrafficLight interface contains a
short data type that stores the light num-
ber. It also provides a method called Set-
Color(), which is called by the coordinator

to set the state of the traffic light. This is a
Callback method, which is invoked by a
CORBA server object.

The coordinator interface declares a
CORBA sequence variable to hold refer-
ences to registered TrafficLight objects.
The sequence is implemented in Java using
a Java array or a Java Vector class. The
coordinator declares a method called Reg-
ister(), which is called by the TrafficLight
object to register itself with the coordina-
tor. The coordinator declares another
method called SetColor(), which is called
by the traffic cop application. The SetCol-

or() method receives two parameters – the
traffic light number and the color for the
light. The coordinator uses this traffic light
number to locate the desired traffic light
object and sets the color to the desired one
by calling SetColor() method on the object.

Mapping IDL to Java
I used Visigenic VBroker for Java for the

development of the application. The first
step in developing the application is to map
the IDL code to Java. The following com-
mand line will do the mapping. Note that
Visigenic provides the idl2java utility.

idl2java –no_tie –no_comments traffic.idl

The –no_tie option tells the compiler not
to generate the tie classes and the
–no_comments option disables the com-
ments generation. The compiler creates a
Java package with the same name as the
CORBA module – traffic. The two CORBA
interfaces are mapped to two Java inter-
faces – TrafficLight and TrafficCoordinator.
The idl2java compiler also creates the
implementation classes and the example
classes for the two interfaces. The files
_example_TrafficLight.java and _exam-
ple_TrafficCoordinator.java can be used to
provide the implementation of the two
CORBA interfaces. Maintain a backup of the
original files to ensure that your implemen-
tation code isn’t overwritten the next time
you run idl2java compiler. Copy the _exam-
ple_TrafficLight.java to TrafficLightImpl.-
java and _example_TrafficCoordinator.java
to the TrafficCoordinator.java file. You’ll
write your implementation code in the
newly copied files.

Developing the Application
The source code for TrafficLightImpl.-

java is given in Listing 2. The class
declares a variable number of short data
types for holding the light number. It
declares one more variable of Java class
type as TrafficLightServer. The source for
the TrafficLightServer class is given in
Listing 3 and is discussed later. The class
TrafficLightServer creates the object of
TrafficLightImpl class. The SetColor()
method of the implementation class (Traf-
ficLightImpl) uses this reference to call the
SetColor() method on the TrafficLightServ-
er object. The constructor for the Traf-
ficLightImpl class receives two parameters
– the reference to TrafficLightServer
object, which called this constructor, and
the light number. The two parameters are
saved into the two class variables dis-
cussed above. The constructor prints an
appropriate message to the user upon suc-
cessful creation of the object. The acces-
sor and modifier methods for the Light-

Number attribute, respectively, retrieve
and save the value to the local class vari-
able – Number. The SetColor() method of
TrafficLightImpl class simply calls the Set-
Color() method of the TrafficLightServer
class.

Now look at the implementation of the
TrafficLightServer class given in Listing 3.
This class is derived from the Frame class
and is a Java command line program. The
program receives one command line argu-
ment that specifies the number for the traf-

fic light to be created. The init() method
sets the location of the frame, depending on
the light number. For simplicity, only four
traffic light objects are considered. The
init() method then builds the user interface
for the traffic light object by creating three
objects of the TLightPanel class. The object
hierarchy for the user interface of Traffi-
cLightServer is shown in Figure 3.

The TLightPanel class is derived from
Panel class and creates a traffic light in the
panel painted in a given color.

After creating the three TLightPanel
objects and adding them to the container,
the init() method of the TrafficLightServer
class sets the listener for window events,
and sets the default light color to red by
calling the SetRedLight() method. Once the
user interface is constructed, the main()
method of the TrafficLightServer class
resolves the reference to the CORBA Nam-
ing Service and locates the coordinator
object. It registers the newly created traffic
light object with the coordinator by calling
its Register() method. The program then
waits for invocations to be made by the
controller.

The TrafficCoordinatorImpl class pro-
vides the implementation for the CORBA
TrafficCoordinator interface. The source
for the TrafficCoordinatorImpl class is
given in Listing 4. The class declares a vari-

26 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
4th Pass 18
www.4thpass.com 206 329-7460

ColdFusion Developer’s Journal 26
www.sys-con.com 800 513-7111

Computer Associates 6
www.cai.com/ads/jasmine/dev 888 7-JASMINE

DevelopMentor 21
www.develop.com 800 699-1932

Distinct Software 33
www.distinct.com 408 366-8933

Enterprise Solutions Conference 41
www.jumpstart99.com 888 823-DATA

EnterpriseSoft 11
www.enterprisesoft.com 415 677-7979

InetSoft Technology Corp. 17
www.inetsoftcorp.com 732 235-0137

Inprise Corporation 49
www.inprise.com 408 431-1000

Advertiser Page
Intuitive Systems, Inc. 15
www.optimizeit.com 408 245-8540

Jinfonet 51
www.jinfonet.com 301 983-5865

KL Group Inc. 23, 68
www.klg.com 800 663-4723

Kuck & Associates 45
www.kai.com 888 524-0101

Microsoft Corporation 37
www.msdn.microsoft.com/visualj 800 509-8344

NetBeans 13
www.netbeans.com 420 2/ 8300 7300

Object Space 67
www.objectspace.com 972 726-4100

OMG 63
www.omg.com 508 820-4300

Oracle Corporation 2
www.oracle.com/info/27 800 633-0539

Pervasive Software 43
www.info@pervasive.com/sdk-jd 800 884-6235

ProtoView 3
www.protoview.com 800 231-8588

Sales Vision 47
www.salesvision.com 704 567-9111

Schlumberger 4
www.cyberflex.slb.com 800 825-1155

Slangsoft 35
www.slangsoft.com 972-3-7518127

Snowbound Software 27
www.snowbnd.com 617 630-9495

Spring Internet World 99 55
www.internet.com 800 500-1959

SYS-CON Radio 54
www.sys-con.com 800 513-7111

Wall Street Wise Software 59
www.wallstreetwise.com/spell.htm 212 342-7185

Advertiser Page Advertiser Page

Traffic Light
CORBA Naming Service

#1

#2

#3
To

Traffic
lights

#4

Controller 1
Controller 2
Controller 3

Controller
1

Traffic Cop

Controller
2

Controller
3

To
Traffic
lights

Figure 1: The traffic light controller application design

able called LightsList from the Java Vector
class. This Vector variable is used for
implementing the CORBA sequence
declared in IDL. The class constructor
prints an appropriate message to the user
upon successful creation of the object. The
accessor method for the lights attribute
copies each element of the vector into an
array of TrafficLight objects and returns the
array to the caller. The modifier method for
the lights attribute isn’t implemented as
this isn’t required for the current applica-
tion. The Register() method receives the
reference to the traffic light object and
copies it into the vector. The method then
prints an appropriate message to the user
upon successful registration of the light.
The SetColor() method is called by the traf-
fic cop application. The method receives
two parameters – the light number and the
color to be set. Note that the color parame-
ter is passed as a Java String rather than as
an object of the Java Color class. CORBA
doesn’t provide a Color data type. Thus, if
you use the Color class in Java, you’ll need
to implement both the traffic cop applica-
tion and the coordinator application. The
method SetColor() iterates through the list
of registered light objects, and for each
object the internal light number is verified
against the number received as a parame-
ter. If the match is found, the SetColor()
method on the matched light object is
called. The TrafficCoordinatorImpl class is
instantiated by the TrafficCoordinatorServ-
er class.

The TrafficCoordinatorServer class
source is given in Listing 5. The main()
method of the class initializes the ORB, cre-
ates the coordinator object and exports it
to ORB. The method then obtains a refer-
ence to the Naming Service and binds the
newly created object to the Naming Service
with the name Coordinator. The Traffi-
cLight and TrafficCop objects locate the
coordinator object using this name. The
coordinator then simply waits for invoca-
tions to occur.

Finally, the TrafficCop class creates a
traffic cop application. The cop application
locates the desired controller object and
receives a list of registered objects from the
controller. The user interface then shows
all the lights with the initial color for each
light set to red. The object hierarchy for the
user interface is shown in Figure 4.

The user interface allows the user to
click on each of the traffic light objects to
select the desired color. After the selection
of state for each light object, the user press-
es the Set button to set the various traffic
lights to the desired states.

The main() method of the TrafficCop
class initializes the ORB and obtains a ref-
erence to the Naming Service. It then

locates the Coordinator object and obtains
a reference to it. The program retrieves the
array of light objects from the coordinator
by calling the accessor method – lights() –
on the coordinator object. The main()
method then creates an instance of the
TrafficCop class. The constructor of Traffic-
Cop calls the init() method, of the class to
construct the user interface of the applica-
tion. The class constructor calls the init()
method, which constructs the object of the
TrafficBasePanel class and a button object
and adds the two components to the con-
tainer using BorderLayout manager. The
program then sets the window event listen-
er and displays the frame window to the
user.

The TrafficBasePanel class is derived
from the Panel class. The class constructor
looks up the number of light objects
received by the cop object and constructs
the number of TrafficLightsPanel objects
that’s equal to this number.

MAXPANELS = Cop.Lights.length;
LightsPanel = new TrafficLightsPanel[MAX-

PANELS];

Each TrafficLightsPanel object displays
a traffic light consisting of three light
objects. The class constructor calls the
init() method, which sets up a layout man-
ager to display the four light panels and
add them to the base panel. Once again, for
simplicity, only four lights are considered.

The Update() method of the Traf-
ficBasePanel class is called by the Traffic-

Cop object whenever the user presses the
Set button. This causes a refresh of all the
panels displayed on the Cop user interface
to reflect the changes made by the user.
The Update() method iterates through all
the displayed light panels, retrieves the
color setting for each panel and calls the
SetColor() method on each of the light
objects.

for (int i=0; i<MAXPANELS; i++)
{
Cop.Lights[i].SetColor

(LightsPanel[i].clr);
}

The TrafficBasePanel class may hold up
to four TrafficLightsPanel objects. The Traf-
ficLightsPanel class constructor calls the
init() method to do the user interface. The

27VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

TLightPanel

Red
Light

Amber
Light

Green
Light

Traffic
Light Server

Figure 2: The user interface of the traffic light controller application

Figure 3: The object hierarchy for the
TrafficLightServer user interface

28 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 3 1999 http://www.JavaDevelopersJournal.com

init() method creates three LightPanel
objects for red, amber and green lights and
adds them to the container. It then calls the
SetRedLight() method of the class to set the
default light selection to Red. The SetRed-
Light() method sets the color of the red
light to red and the colors for the other two
lights to gray. Similarly, the other two meth-
ods – SetAmberLight() and SetGreenLight()
– set amber and green lights, respectively,
and set the rest of the lights to gray. The
TrafficBasePanel class implements the
MouseListener interface. In the mouse-
Pressed() event, the clr string variable of
the class is set to the appropriate color
value, depending on the LightPanel object
being clicked. The event handler also calls
the appropriate set() method for setting the
color of the traffic light to the desired one.
For example, a click on the red light high-
lights the red light and the other two lights
are turned gray.

Last, the LightPanel class is used for
drawing individual lights – red, amber and
green. The class constructor receives a ref-
erence to the TrafficLightsPanel object so
the mouse events can be passed on to it.
The second parameter specifies the color
of the light. Depending on this parameter,
the appropriate color string – red, amber or
green – is printed on the light. The paint()
method constructs the visual appearance
of the traffic light. The SetColor() method
of the class is called whenever the user
updates the display of the cop application
by pressing the Set button. The method
copies the received color into the local
class variable and repaints itself to show
the changes.

Compiling the Application
As mentioned earlier, Visigenic VBroker

for Java was used for developing and test-
ing the application. The first step in build-
ing the application is mapping the IDL code
to Java using the idl2java utility supplied by
Visigenic. The following command line is
used for mapping IDL code to Java:

idl2java –no_tie –no_comments traffic.idl

To compile the several Java classes dis-
cussed above and shown in Listings 2
through 6, use the make.bat file shown in
Listing 7. This creates all relevant files for
the application. The next step is to run the
application.

Running the Application
To run the application, start the osagent

service and the CORBA Naming Service.
The following two command lines start
these services:

start osagent ñC

vbj -DORBservices=CosNaming -
DSVCnameroot=TRAFFIC -DJDKrenameBug
com.visigenic.vbroker.services.CosNaming.Ext
Factory TRAFFIC namingLog

Next, start the coordinator service using
the following command line:

start vbj -DORBservices=CosNaming -DSVCname-
root=TRAFFIC -DOAid=TSession TrafficCoordi-
natorServer

Once the coordinator is started, create the

traffic lights using the following command:

vbj -DORBservices=CosNaming -
DSVCnameroot=TRAFFIC -DOAid=TSession Traffi-
cLightServer 1

This creates Traffic Light #1 and registers
itself with the coordinator. The appropriate
message is printed in the coordinator win-
dow. Likewise, create three more traffic lights,
replacing the command line parameter with
the appropriate number for each light.

At this stage, the screen displays four
traffic lights (see Figure 2). Next, start the
traffic cop application by using the follow-
ing command line:

vbj -DORBservices=CosNaming -
DSVCnameroot=TRAFFIC -DOAid=TSession Traf-
ficCop

The user interface for the traffic cop is
shown in Figure 2. Click on the individual
lights to set the desired colors and press
the Set button. The corresponding lights
will be set on the four light objects.

I didn’t provide an unregister method
for the traffic light. Thus, if you close a traf-
fic light and re-create it, two copies will be
registered with the coordinator. If you
restart the cop application, both copies will
be shown on the cop panel. To avoid this
situation, close the coordinator and the cop
and rerun the application if any of the lights
need to be closed.

Conclusion
Callbacks in CORBA allow the CORBA

server to call a method on the client. The
callbacks are achieved by saving the refer-
ence to the client in the server class. The
server object is responsible for tracking
such references and invoking any of the
public methods on the desired client by
using these references. Callbacks are very
useful in real-life situations to notify the
client of the occurrence of a certain event or
of the completion of processing on the serv-
er end. This article has discussed one such
real-life example and explained how CORBA
callbacks are implemented using Java.

About the Author
P. G. Sarang, Ph.D., is president and CEO of
ABCOM Information Systems Pvt. Ltd., a consulting
firm specializing in Internet, Java, CORBA, Visual
C++ and VB programming and training. He can be
reached at sarang@abcom.com.

Traffic LightsTraffic Lights Panel

#1

#2

#3

#4

Traffic Cop
Traffic
Base
Panel

Figure 4: The object hierarchy for the TrafficCop user interface

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

sarang@abcom.com

http://www.JavaDevelopersJournal.com 29Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 3 1999 •

Power 2000
www.power2000.com

It seems ironic that the JCalendar widget
was one of the first that came to mind when
this column was being conceived. At the
time, it seemed likely that Sun would
include a calendar component with Swing –
there were hints in the beta releases, and
the preview directories contained minor
evidence that this was one of the areas to
be developed.

Swing 1.0 was released, later Swing 1.1,
then JDK 1.2 hit the streets, and still there
was no calendar component. Here you have
it – JCalendar – with all the bells and whis-
tles.

Overall Design
As always, our design places con-

siderable importance on flexibility. In
keeping with the spirit of Swing, we
support custom renderers, use the list
selection model and provide a JCom-
boBox-style popup implementation.
Figure 1 shows a calendar view using
the default renderer. The JCalendar
widget lets you specify the number of
horizontal and vertical months to dis-
play. The arrow buttons let you move
to the previous or next month, as do
the page up and page down keys. You
can select multiple days, using either
the mouse or the keyboard, and move
around with the arrow keys. The
home and end keys also let you jump
to the first or last day.

To build JCalendar we’ll need sev-
eral supporting classes. Each day in
this grid display is handled by the Cal-
endarMonth class. The month title is
provided by a CalendarTitle class, con-
tained in a CalendarHeader with
optional ArrowButton instances.
Together these are managed by a Cal-
endarView class. Because JCalendar
needs to handle multiple views in a sin-
gle framework, we use an additional
CalendarGroup class that is aware of
each of the other views and consoli-
dates many of the common operations.
Finally, we’ll provide a JCalendarField
class that works like a JComboBox.

Rendering Days
The CalendarMonth class is responsible

for much of the logic required by JCalendar.
It handles keyboard events, renders each of
the days, interfaces with the list selection
model, and more. In this section we’ll walk
through the listings that relate directly to
the CalendarMonth class. When you get the
source code, run the CalendarMonthTest
harness and you’ll see something similar to
Figure 2, displaying each of the days for the
current month.

Listing 1 shows the code for our Calen-
darRenderer interface. We declare two
methods to support both the rendering and
the background color selection for the

unused cells. The getBackdrop method
returns a Color object. The method that
does the actual rendering is called getCal-
endarRendererComponent. It requires that
we provide a reference to the calling com-
ponent, the value of the day being rendered
(which is a string in this case) and two flags
to indicate whether the rendering cell is
selected and/or has the focus.

Listing 2 is the DefaultCalendarRenderer
implementation. As with most of the Swing
default renderers, we extend the JLabel
component. Our view will use a raised and
lowered border to indicate selection, with a
blue background to indicate focus. Our
implementation is used to render both the
days and the headers in the CalendarView.
Nothing forces you to use the same render-
er for these, but they implement the same
CalendarRenderer interface. We make the

distinction between headers and cell
rendering in the constructor and
save the value for later use.

The getBackdrop method simply
returns lightGray for the background.
Our getCalendarRendererComponent
method does the real work. It sets
the label text based on the value in
the second argument, then sets the
border, foreground and background
colors depending on whether the cell
is selected and/or has the focus. List-
ing 3 shows an alternate Calendar-
Renderer, called a SimpleCalendar-
Renderer, that provides a simplified,
flattened view. The background is
normally white and no borders are
used. Selected cells are highlighted
with a blue background. The focus
and header underline are drawn by
overriding the drawComponent
method.

Listing 4 has the logic for the Cal-
endarMonth itself. You’ll notice that
this class also requires a Calendar-
Group instance. CalendarMonth is
responsible for rendering and pro-
vides selection and notification along
with keyboard and mouse event han-
dling. It also exposes a few accessors
and navigational methods. Dates are
stored using Java Calendar objects
that provide us with information
about each year, month and day.Figure 2: CalendarMonth display

JCalendar
This calendar widget is right on time

by Claude Duguay

Figure 1: JCMaskField classes

30 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 3 1999 http://www.JavaDevelopersJournal.com

31Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 3 1999 •http://www.JavaDevelopersJournal.com

Sybase
www.sybase.com

Some of the logic in CalendarMonth could
have been handled by new Calendar meth-
ods from JDK 1.2, but you may need to get
this running under Java 1.1.

The accessor methods are self-explana-
tory. The setDay method uses the setSelec-
tionInterval from the ListSelectionModel
interface to keep the model in sync. We use
the Swing DefaultListSelectionModel in all
our examples. Some of the support meth-
ods include nextMonth, prevMonth, set-
FirstDay and setLastDay. We also use a
setActive method to set the active flag,
which lets us determine if the current
month has the virtual focus.

The rendering is handled in the paint-
Component method and is delegated to the
drawCell method, which actually calls our
registered renderer and uses the Swing Cell-
RendererPane to paint the component. The
CellRendererPane is critical to this equa-
tion. It gets added to the CalendarMonth
panel in the constructor as the Center com-
ponent in a BorderLayout, so it expands to
fill the viewing space. The CellRender-
erPane has an extended paintComponent
method that takes the graphics context, the
render component and the requested x, y,
width and height.

The CalendarMonth paintComponent
method draws the background based on
the renderer getBackdrop color and then
walks through a 6 x 7 grid, checking each
cell for validity. This is handled by the
isValidDay method. In addition, we provide
an isSelected method to determine if a cell
is currently selected in the ListSelection-
Model. The isSelected method always
returns false if the CalendarMonth is not
considered active. This is important, since
we may be sharing the same ListSelection-
Model between multiple CalendarMonth
objects. Because the renderer is not actual-
ly a child component, we also need to pro-
vide our own calculations for the getPre-
ferredSize and getMinimumSize methods.

To handle mouse selection, we intercept
the mousePressed and mouseDragged
events, so we must implement all the meth-
ods in both the MouseListener and the
MouseMotionListener interfaces. We regis-
ter these in our constructor. The mouse-
Pressed event gets the focus and activates
the clicked-on month before calculating the
selected day from the mouse position. If the
shift or control modifier keys are pressed,
we extend the selection; otherwise we select
the pointed-to day. In either case, we fire off
an ActionEvent to any registered listener.
The implementations for addActionListener,
removeActionListener and fireActionEvent
are listed at the end of the code. The mouse-
Dragged event merely calculates the point-
ed-to day and extends the selection.

Monthly Functions
Navigating between months can be done

with the page up and page down keys, by
moving beyond the first or last day of the
month with the arrow
keys or with the
arrow buttons provid-
ed in the Calen-
darView. This class is
largely a wrapper for
several elements, as
shown in Figure 3.
The ArrowButton
objects are optionally
placed in the upper
left and right corners,
with the CalendarTi-
tle between them.
Let’s take a look at
the individual ele-
ments and wrap this
section up with the
CalendarView class
itself.

The ArrowButton
in Listing 5 is a sim-
ple extension of the
BasicArrowButton.
Our implementation
extends BasicArrow-
Button, and over-
rides a copy of the
paint method to
make the border thin-
ner in order to stay
consistent with the
rest of our elements,
which use the Thin-
Border class from
Listing 6.

Listing 7 shows
the CalendarTitle
class, which extends
JLabel to show the
current month and
year – a convenient

way to set the border and alignment values.
The CalendarHeader class in Listing 8
implements a few of the same methods
used by CalendarMonth to handle render-

Figure 4: JCalendar with a 2 x 3 layout

ArrowButton

CalendarTitle

CalendarMonth
CalendarView

Figure 3: CalendarView layout

32 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 3 1999 http://www.JavaDevelopersJournal.com

VOLUME: 4 ISSUE: 3 1999 • 33Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Distinct Software
www.distinct.com

ing. The CalendarHeader class shows the
first letter of each day of the week above
the CalendarMonth display, and uses the
CalendarRenderer interface to do the draw-
ing. As such, it uses the CellRendererPane
and implements the getPreferredSize and
getMinimumSize methods explicitly. We
also implement the isFocusTraversable
method to always return false since this
object is not selectable.

We tie all this together in the Calen-
darView, as presented in Listing 9. Most of
the work in our constructor sets up the lay-
out and child components. The west and
east arrows are created based on a pair of
Boolean arguments passed in by JCalendar.
After creating the CalendarMonth, we reg-
ister as an action listener to respond to
basic selection events. When the month
changes, we need to update the Calendar-
Title text, as formatted by the formatDate
method.

JCalendar Widget
The high-level view and widget control

are pulled together in the JCalendar class.
Figure 4 shows the JCalendar in action, with
a 2 x 3 grid specified. As you can see, the
arrow buttons are present only in the top
left and right CalendarView. The behavior is
complicated by our desire to allow the user
to flow from month to month with the
arrow keys and to automatically update
each month as a sequence whenever a
month is changed. Furthermore, we want to
avoid flicker and provide seamless repaint
events, so we need to implement a Calen-
darGroup to manage these effectively.

Listing 10 shows the CalendarGroup
class. We keep track of the parent object so
we can set paint events at the highest level
after setting up the children This avoids
unnecessary paint events and keeps the
elements from repainting sequentially. The
group elements are held in a Vector array
and we use an active variable to save the
current month index. While there are sev-
eral methods in this class, they’re general-
ly unremarkable: setting and getting the
current month, adding new members and
testing or setting positions. The nextMonth
and prevMonth methods walk the list of
group members, calling their own respec-
tive nextMonth and prevMonth methods.

The main JCalendar class is presented in
Listing 11. We provide a number of con-
structor variants with default selection
model and renderers. Each one calls the
main constructor, which sets up a GridLay-
out and populates the grid with Calen-
darView objects. This is where we decide
which arrows are to be activated. Most of
the following methods set and get proper-
ties for the date, selection model, header

and cell renderers.
We listen for Calen-
darMonth events
and fire our own
action events, imple-
menting the addAc-
tionListener, remove-
ActionListener and
f i r e A c t i o n E v e n t
methods to support
this.

JCalendarField
One of the best

ways to put our cal-
endar to work is in
popup menus and
C o m b o B o x - s t y l e
fields. To demon-
strate this, we use
the SimpleCalendar-
Renderer and pro-
duce a JCalen-
darField widget to
add to your collec-
tion. Figure 5 shows
how it looks when the user clicks on the
arrow button. There are a number of minor
tricks at work in this class. The class
extends JPopupMenu and uses its ability to
handle arbitrary components.

There doesn’t seem to be a way to
extend JComboBox to use a new list popup.
Since we need to use a component that
needs to receive mouse events, we’re
forced to manage our own drop-down posi-
tioning as well. As with many of the previ-
ously mentioned problems, the solution
actually involves only a few lines of code.
The hard part, usually, is finding the solu-
tion. Keep that in mind – especially for this
widget. If you implement one from scratch,
it’s likely you’ll be spending much of your
time in this part of the code – unless you
remember how it’s done.

Listing 12 shows the JCalendarField
class. We provide two constructors, one of
which uses the current date; the other
expects you to provide one. Our main con-
structor sets up a BorderLayout with a
JTextField in the center and a normal
BasicArrowButton on the right, pointing
down. To push the button into the field we
get the field border and set it as the border
for the whole component, setting the
JTextField border to null. This keeps
things consistent with the currently select-
ed look-and-feel. We also create a JPopup-
Menu and add a JCalendar instance as its
only child.

If the popup isn’t visible when the but-
ton is pressed, we position it under the but-
ton and set the date to reflect the field
value. Notice that we use getPreferredSize

rather than getSize because the actual size
is not actually established until the popup
menu is first displayed. It causes problems
with positioning if we don’t use this
approach. We also register to receive action
events from the JCalendar object, closing
the popup and retrieving the selected date
when the mouse is clicked.

Summary
Both the JCalendar and JCalendarField,

with their respective renderers and other
features, provide a great deal of power. The
calendar metaphor is ideal for navigating
temporal regions. This is useful in
browsers for setting date ranges or simply
for determining what day of the week a par-
ticular date falls on. For users, this is the
intuitive choice, consistent with their
material experience and easy to under-
stand. You can make your programs more
accessible and customize this calendar
widget to your heart’s content. Make it
work for you.

About the Author
Claude Duguay has been programming since 1980.
In 1988 he founded LogiCraft Corporation, and he
currently leads the development team at Atrieva
Corp. You can contact him with questions and com-
ments at claude@atrieva.com.

claude@atrieva.com

Figure 5: JCalendarField popup

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal34

http://www.JavaDevelopersJournal.com Java DEVELOPER’S Journal 35VOLUME: 4 ISSUE: 3 1999 •

Slangsoft
www.slangsoft.com

http://www.JavaDevelopersJournal.com

Darwin’s Natural Selection
About two and half years ago our com-

pany was hired to write an application that
would allow our client, Georgia Tech
Research Institute (GTRI), to access their
financials over the Web. It was our first
major push into data access over the Web
and we were pretty hyped. GTRI hired us
because we were a PowerBuilder shop and
all of their applications were written in
PowerBuilder. Both Georgia Tech and our
company, Sage Software, were excited
about using PowerBuilder’s new Web.PB. It
looked very promising.

We soon realized that none of GTRI’s
existing code could be reused for this pro-
ject. The programmers before us were
guilty of the same thing that Sage Software,
and most PowerBuilder programmers, were
guilty of: we wrote our business logic in the
user interface and not in business objects.
The idea of reusing the code was thrown
out and we started from scratch.

Creating Web applications was very
tedious at that time. Basically, you wrote
and compiled an executable that would sit
on the Web server. You started that appli-
cation like a normal application; however,
this application did not consist of a user
interface. When a request from the Web
came across the wire, it was directed to the
CGI-BIN directory where a special applica-
tion parsed the URL string and decided
what to do with it. It first deciphered a
directory in the URL string and determined
the name of the program. It then looked in
an INI file in the Windows System directory
to find the IP address and port number.

Next, it instantiated a new user object
and called one function inside that user
object. If the function’s main purpose in life
was to display a tabular report, your func-
tion connected to the database, created a
DataStore object, retrieved and looped
through the data. You were responsible for
taking each row and each column and
inserting a <TR> and <TD> tag. Finally, you
disconnected from the database and sent
back a massive string to the Web server.

Now let’s get complicated and say that
the user wanted to scroll through the data.
Your function would be required to do the
same thing; however, you needed to track
what row the user was on and what rows

should be displayed next. Since the Web is
a stateless environment, you had no way of
knowing who the user was, what screen he
or she was on, what rows had previously
been selected, and so on. If you wanted to
track information between each Web hit,
you had to store it in the database or in
cookies. Thus you’d reconnect to the data-
base, retrieve the data (again), determine
what the user did last, skip to that row and
begin your <TR> and <TD> tags.

Forget about data entry and updates.
You created your own form through con-
catenating a large string with form ele-
ments. Once the data was submitted, you’d
construct your SQL statement and submit it
to the server. As Archie Bunker would say:
“Those were the days.”

The Strongest Shall Survive
Thank goodness for competition and the

American way. Without good clean compe-
tition, I’d still be writing Web applications in
this prehistoric manner. Two and a half
years have brought us a long way – to the
age of the Internet, e-commerce and appli-
cation servers.

Like all good paradigm shifts, the indus-
try latches onto a terminology that sticks.
The new terminology is application servers.
Depending on which vendors you talk to,
you’re likely to get different definitions of
an application server. While there are sev-
eral bullet points that define what an appli-
cation server should be, for the moment
let’s forget about the essential – though less
sexy – components, including load balanc-
ing and failover. That’s terminology that the
IT juggernauts like to use when ensuring
upper management that the system is 100%
reliable. I want to talk about the items that
help me, as a developer, to be more pro-
ductive in my work.

State and Session Management
To me, state and session management is

the single most important thing about an
application server. Let’s say that your appli-
cation has 40 separate Web pages, all acces-
sible by a left-frame navigation. I want my
application server to be able to track what
my user has done on each of the 40 pages. If
the user goes to the search page and search-
es for and retrieves 200 rows of data, I want

Pathways’
SilverStream Solution

Sage Software

uses SilverStream

to help social

services agencies

help the homeless

SilverStream
gets an A-
for HTML

development
project

About the Author
President/CEO Chad Ruff founded Sage Software,
Atlanta, Georgia, in 1995, and has concentrated his
company’s efforts on delivering state-of-the-art custom
applications using PowerBuilder, MapInfo, Java and
other Internet-related technologies. He can be
reached at chad.ruff@sagesoft.com.

by Chad Ruff

chad.ruff@sagesoft.com

S
il

v
e

rS
tr

e
a

m
F
o

cu
s

• VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal36

37VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

that page to persist until the user’s session
times out. In other words, the user shouldn’t
have to hit the back button 10 times to get
back to that search result. The user should
only have to hit the search button once.

For shopping cart applications, I don’t
want to be responsible for tracking what
users have selected in their carts by storing
this information in a cookie or database
field. I want the page to either track it or
store the items in session variables.

I also don’t want the overhead of connect-
ing to the database for each transaction. I want
a database connection pool that my users can
share. The longest part of any application is
the initial connection to the database.

Business Logic Host
In true three-tier applications, your busi-

ness logic resides on the middle tier. Appli-
cation servers, by default, are that middle
tier. You write your code in business objects
and separate this business logic from the
user interface. You also want this middle
tier to be open so that it can talk to other
transaction servers to get your suppliers.

Intelligent HTML Forms
As a throwback from my PowerBuilder

days, I want HTML elements that can be pro-
grammed. I want to be able to place an
HTML field on the page and bind it to a data-
base field. I also want the server to be able
to create the necessary SQL to create, read,
update and delete. I want each element to
be able to be programmed such that when a
user clicks on the submit button, I can ref-
erence the elements with more than a sim-
ple “value” method. I also want to be able to
program these elements using Java.

Easy Distribution
The most obvious advantage of deploy-

ing on the Web is the ease of distribution.
We’re no longer responsible for installing
our executables and OCXs on our users’
machines. Even though we think this
deployment has simplified the use of Web
technology, it can still be complicated. One
project I worked on had static HTML forms,
images, Java applets and classes, and Ora-
cle Web procedures. To migrate from a
development environment to a production
environment wasn’t an easy task. I want my
application server to be able to publish
everything with the click of one button.

And On and On…
The list goes on for application servers,

but these are my hot buttons. Don’t forget
about security, load balancing, thread pool-
ing and access to different data sources such
as Notes, PeopleSoft, ODBC and JDBC. We all
have our hot buttons from the experiences
we’ve suffered through over the years.

The Project
Enough commentary. At Sage Software

many of our clients turn to us for Web-based
solutions to improve all sorts of business
processes. One such project, for an organi-
zation called Pathways, began in October
1998. Based on the needs of Pathways, we
decided an application server was the best
approach and chose SilverStream Software
Inc.’s application server for the project.

Pathways, Inc., is a collaborative effort
of more than 25 local social services agen-
cies, three local governments and United
Way of Metropolitan Atlanta. Pathways and
the Web application’s goals are to:
1. Develop an innovative computerized sys-

tem to help social services agencies work
effectively together with individual con-
sumers to help them recover from home-
lessness. The application will allow staff
and volunteers at participating agencies
to access the database simultaneously
over the Internet.

2. Generate accurate demographic data on
the size and characteristics of Atlanta’s
homeless population and chart the effec-
tiveness of local programs that work with
the homeless. Since Pathways’ agencies
supply most of Atlanta’s homeless and
homelessness prevention services, the
database they share will quickly yield
meaningful qualitative and quantitative
data on one of the community’s most
pressing social problems. The data will
be used to craft innovative local and
national solutions.

During the bidding process, we asked
the normal question: “Java or HTML?” The

natural response was a rich user interface –
thus Java. After a quick study of the infra-
structure of Pathways, it was determined
that the bandwidth was too small to sup-
port a large-scale Java application. Most
agencies would be sharing a 28K modem to
access the Internet. So HTML was chosen.

The next question: “What development
environment should be used?” Pathways
allowed Sage Software to select the best
application server. In the past we used
Active Server Pages (ASP) for HTML and Sil-
verStream for Java. Since this was going to
be an HTML project, we initially intended to
use ASP; however, one of Pathways’
requests was that they wanted an easy
migration from the HTML environment to
the Java environment. They were forward
thinking and knew that one day the band-
width would catch up.

This requirement paused our efforts and
we reexamined SilverStream’s HTML capa-
bilities. After a quick evaluation, we realized
that SilverStream was stronger in HTML
generation than anything we’d ever seen. In
addition, we could write all of our business
objects in Java. This meant that when we
decided to build our forms using Java, we
could reuse all our business objects. Not a
new concept, but SilverStream is practicing
what the industry was preaching.

The SilverStream Solution
We were awarded the project in mid-

November 1998; development began on
December 1. The project had massive
amounts of data that we were to track and
the project timeline was short. We were
faced with approximately 20 pages that

S
ilv

e
rS

tre
a

m
F
o

cu
s

Figure 1

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal38

worked against 25 main
tables and 30 code tables.

The application required
each user to have job-specific security
roles. These roles were needed to allow the
user to see different pages and have differ-
ent read/write access on each page. This
was easily accomplished in the database by
creating three tables – a user table, a role
table and an objects table. The user table,
of course, tracked all of the users. The role
table created different groups, much like
roles in Windows NT security or Oracle
security. Finally, objects were created that
mirrored the page names of the application.
Read/write attributes were assigned to
each role for each object and each user was
assigned one or more roles.

In addition to the normal security
defined above, some pages allowed the
user to read and write data only to the
agency to which they were assigned. In
other words, if one user went into the case
management page and entered notes for
Agency A, another user assigned to Agency
B could not see those case notes.

The Beginning…
How was this application created in two

months with a minimum amount of
resources? Please keep in mind that this
application dealt only with pages. Pages, by
SilverStream definition, are HTML pages
with a little JavaScript. For this application
we didn’t dabble with the Java Forms or
Views. Even though there’s a lot of power in
the Forms and Views, we stuck with the
Pages for this project. See Figure 1 for a
basic understanding of the interface.

A simple login screen was required to
allow the user to have access to the appli-
cation. Using the Page designer, I simply
created an HTML page with tables and a
form. The form contained two single-line
edits and a Login Button. Each object is no
simple form element; rather, it is a Java
object that has many properties and func-
tions.

The Login Button has an event called
pageActionPerformed. Listing 1 shows the
Java code for this event. You’ll notice that
this is Java code, not JavaScript. This is a
common misunderstanding.

Let’s start with line 14. Here I access a
field (HTML single-line edit) with a method
called getValue. This simply gets the value
of the text field object. I then check to
ensure that the user has entered at least
one value. On line 17 I call the
agScriptHelper.alert() method. This pro-
duced JavaScript that is called on the body
load event in HTML.

If the page passes both validations, I
then populate a string with a query that I
want to pass to my business object. (For

security and privacy reasons I’ve altered
the query statement, and I can’t show you
the business object.)

On lines 35 and 36 I populate a hashtable
with two parameters; then, on line 41, I
invoke a business object that performs the
SQL against the database. The page gets
passed back a result set if the query was
successful. On line 55 I go to the first row of
the result set (there should only be one
row), and on lines 66 through 68 I retrieve
the values of the first row. On lines 71
through 75 I set the session objects that will
be used throughout the application. These
session objects are the only ones required
to run the application. Finally, I issue the
showPage method, which will open up the
frame set for the main interface.

If the user were to view the source, they
would see Listing 2. As you can see, this
looks nothing like Listing 1. The Java code
runs on the server, and the user never sees
anything except the simple HTML elements.

CRUD
Create, Read, Update and Delete: these

are the primary things you want to do when
accessing your database. Clearly, Silver-
Stream was designed from the ground up to
be concerned about database access. All of
the primary screens in the application
require CRUD in one way or another.

Creating a CRUD page in HTML is very
simple.
1. Select New Page from the page designer.
2. Select a data-aware page format.
3. Select the primary table.
4. Select the fields of the primary table.

5. Select the Style for the Page. The Style
sets the default colors of the page and
the text on the page. It also gives you the
basic CRUD navigation buttons – First,
Last, New, Save, Delete, etc.

6. Give the page a name.

SilverStream then takes over. It creates
your HTML page and your data access
object, then binds the fields to the form ele-
ments and provides the navigation bars.

If you’re only trying to update the entire
table, then you’re finished. However, most
of us want to update a subselect of the
table. In our case we have a client record
and we want to update all of the case man-
agement files for that client. Thus we only
want to retrieve the client records in the
case management table. There are several
ways to do this. This was our approach:

We have a search screen that allows the
user to search the database based on one
or more fields. When the user locates the
record that he or she wishes to modify, we
set a session value. On the left frame vari-
ous images were created for navigating to
different sections of the client. The images
are programmable, so we grabbed the ses-
sion value and constructed the where crite-
ria for the page. The where criteria consist-
ed of “CLIENT_KEY={session value}”. Then,
using the above predefined method, we
passed the page name, frame name, the
where criteria and the sort criteria as the
parameters. When the page loads, it reads
in the values that were passed and con-
structs the query for the database. The
sample code appears in Listing 3.

For each of the pages, Pathways wanted
to see common information about the
client. Thus we created a page that con-
tained these elements – name, address and
age. We created our own methods for
retrieving the client information and saved
the page. In certain pages, such as the Case
Management page, we dragged and
dropped the Header page, making it a sub-
page of the Case Management page. From
the Case Management page we can treat the
subpage as an object and call its methods
and access its properties. How about that?
Object-oriented HTML development.

Now let’s add security to this screen.
The security method is a common element
for each page. It has a rather complicated
SQL statement that needs the user ID and
the page name as the parameters. For secu-
rity reasons I won’t display the code for
this. I will tell you, however, that it was easy
to accomplish this for all the pages. We
added the security methods to the Header
page. On the pageRequestBegin event we
called the method and passed in the ses-
sion object’s user ID and the screen name.
The security object would pass back a 0, 1

S
il

v
e

rS
tr

e
a

m
F
o

cu
s

“SilverStream
is an excellent

tool for creating
fully functional
enterprise Web
applications”

39VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

or 2. If it was a 0, the user didn’t have
access to the page and had to be directed
to an error page. If the return was a 1, the
user had read access only, and we simply
set the property for the Save, Delete and
New buttons such that the HTML would not
be generated for the objects.

Data Views
Data views are powerful objects within

SilverStream. On each of the pages we
allowed the users to update one record at a
time. They could scroll through the
records, save and delete, and then scroll to
other records. To give the user an idea of
how many records were in their select, we
added a Data View just below the naviga-
tion bars. The Data View was linked to the
page’s cursor so that we could see all of the
records for that select. The records in a
Data View are displayed in a table with neat
scroll bars that allow the user to scroll up
and down on the records.

Stored Procedures
I’m adding this section for the Silver-

Stream enthusiasts who haven’t coded
their first stored procedure call. Putting
your business logic in stored procedures is
still a good idea for heavy transaction-
based functions that hit many tables. List-
ing 4 contains a very simple call to a stored
procedure in SilverStream. You’ll notice,

however, that this is a purely JDBC call,
which is why it took me some time. I was
looking for SilverStream classes, but there’s
no need to extend the JDBC calls.

Line 3 shows the connection string to
the database. If you’re unsure of the con-
nection string, look in the SilverStream
management console under the database
that you’re using. On Line 16 is the stored
procedure that you’ll be calling. You’ll use
the “?” for the parameters in this string.
Don’t attempt to concatenate a string that
includes the actual values. The “{” is
required too. On Line 19 you’re connecting
to the database. You will, of course, use
your own user ID and password. On Line 21
you’re creating your Callable Statement and
on Lines 23 and 24 you’re putting in your
two parameter values. Finally, on line 25,
you’re calling the procedure. This stored
procedure doesn’t return a result set,
which is why it took me a few hours to fig-
ure out. There are a ton of examples on how
to get a result set back. As you can see, this
is pure Java and JDBC, so it can be applied
outside of SilverStream.

Final Analysis
SilverStream is an excellent tool for cre-

ating fully functional enterprise Web appli-
cations. At the time of this writing, the
development of the project is complete two
weeks ahead of what we considered a tight

schedule. We are now beginning the alpha
test phase; however, Pathways has been
able to see the work as it progressed. They
provided valuable feedback along the way,
saving us time in the long run.

The SilverStream newsgroup has been
an excellent source for how-to’s and prob-
lem solving. We only needed to call Silver-
Stream once for assistance.

The entire project went quite smoothly,
which is generally hard to say about any
application server. It was a large project that
we completed in just two months. The
resources involved were two SilverStream
developers, an Oracle DBA and a Visual
Basic programmer. Your next question is:
“Why a Visual Basic programmer?” We found
that a majority of the work was creating the
presentation of the screens and the layouts.
Our Visual Basic programmer picked up Sil-
verStream and created all of the forms with-
out one day of training. The SilverStream
coders came through and added the code
once the forms had been created.

SilverStream gets an A- by my grading
system. I don’t give A+’s, and it must be
flawless to get an A. I’ll use it for all future
HTML development projects.

S
ilv

e
rS

tre
a

m
F
o

cu
s

Announcing:
JBuilder Developer’s

Journal

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

40 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The application server category is one
of the more confusing markets to under-
stand. In addition, the market changed
rapidly during 1998, with a number of com-
panies being acquired. This article aims to
clarify the situation.

Software: A History of Consolidat-
ing Services on New Platforms

Looking back at the major shifts that
have taken place in the software industry, a
trend emerges that is a helpful indicator of
what is likely to happen in the evolution of
the application server market. As new plat-
forms emerge, there are generally a number
of players providing point products that
address a specific niche area. As the market
matures, leaders emerge who tend to incor-
porate most of the point products’ func-
tionality into their primary product. An
example of this is the relational database
area where data warehousing, object data-
bases, full text retrieval, transaction pro-
cessing and bitmapped indexing have been
consolidated into market-leading products

such as Oracle8. In another example, we
see SAP take a leadership position by inte-
grating functionality that was previously
available only in multiple point products.
On the client side we see Microsoft inte-
grating all of the standard office products
into a single suite, and in the process elimi-
nating players that have led a single prod-
uct category. I predict that a similar consol-
idation of services is about to take place in
the middle tier.

The Next Consolidation: The Middle
Tier Becomes Essential, Driven by
Thin Client

The driving force for the shift to the next
computing platform is clearly thin client
and Web-based computing. Organizations
frequently need to deploy e-commerce
applications that are both consumer and
business-to-business focused. Furthermore,
there is strong pressure to provide ubiqui-
tous access to applications at a low cost.

Supporting Web and thin client applica-
tions automatically implies a shift toward
placing most of the processing in the mid-
dle tier.

The Middle Tier Before the Web
Prior to Web-based and thin client com-

puting, we saw a number of point product
areas in the middle tier:
• Distributed object services (ORBs,

OTMs, etc.)
• TP monitors, transaction managers
• Connectivity products providing applica-

tion access to, and integration between,
legacy data, ERP applications, RDBMSs, etc.

These products didn’t provide facilities
to support the generation of a user inter-

face or what we refer to as “Presentation
Services.”

Web Application Servers
Starting around 1994, the major drive to

create dynamic interactive Web applica-
tions spawned a new kind of middle-tier
product: the Web application server. The
first generation of this kind of product was
simply a Web server running CGI scripts.
The second generation focused on making
it easier to develop and deploy dynamically
generated HTML pages, taking over where
CGI scripts left off. In this generation the
primary purpose of these products was to
provide presentation services (see Figure
1). A major limitation of this architecture
was that business logic was being embed-
ded in scripts inside Web pages.
• Presentation services: Dynamic HTML

generation, state and session manage-
ment

• Integrated tools: Servers that come with
integrated development tools to help
build the HTML-based applications

The Next Step
As Web application servers evolved,

they added important facilities to increase
their usefulness (see Figure 2).
• Limited object services: As developers

realized the limitations of placing busi-
ness logic in scripts on Web pages, facili-
ties were added to partition this logic
into reusable middle-tier objects. Most
vendors added RMI and CORBA support
to allow distributed access to these
objects. Some vendors also allowed
access to COM objects.

• Connectivity services: In addition to
robust, server-grade drivers for the main

The Application Server Market

I M H O

by David Skok

Some 40 companies
claim to have
application servers,
each offering widely
different functionality.
Where is the market
headed? Where do
the different types
of players fit?

Figure 1: Second-generation Web application servers

S
il

v
e

rS
tr

e
a

m
F
o

cu
s

41VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

relational databases, connectivity is pro-
vided to access data in the major ERP
applications and legacy systems.

• Enterprise deployment services: As
scalability and reliability became para-
mount to supporting the large numbers
of users accessing e-commerce Web sites
with 24x7 availability, features such as
load balancing and failover became
important. Security and application man-
ageability are the other key deployment
services.

• Java clients: While HTML Web-based
clients are satisfactory for many applica-
tions, heads-down production users work-
ing at a system eight hours a day need a
richer UI. Java at the client meets the need
while still retaining thin-client deployment
advantages. Well-designed servers sup-
port Java clients over secure HTTP and
provide a three-tier data architecture
(queries executed at the server, with
result sets remotely accessible via objects
at the client). Facilities should be provid-
ed for automatic distribution and updat-
ing of the client-side application for appli-
cations deployed outside the browser.

Web Application Servers Meet
Distributed Objects

So far we’ve described two separate
markets, the first consisting of object,
transaction and connectivity services with
no presentation services; the second, a
market driven primarily by the need to
deliver thin-client presentation support.

In mid-1998 these two worlds collided,
resulting in major market confusion (see
Figure 3). Leading up to the collision was
increasing industry recognition that mid-
dle-tier distributed objects provided the
right architecture for the creation of larger-
scale sophisticated applications. Sun’s
Enterprise JavaBeans (EJB) specification
was the catalyst for the collision. It provid-
ed a standard specification for how these

middle-tier objects should be written, and
made them far easier for the developer to
write (the hard work would be done by the
EJB container and server vendors).

A Market Thrown into Confusion
Both the application server vendors and

the vendors of object and transaction ser-
vices realized that they needed to support
the EJB standard; at this time a variety of
different products changed their name to
application server. All of a sudden there
were 40 application server vendors, each
offering widely different types of functional-
ity. Some were focused on Web applica-
tions, offering strong presentation services;
many others were pure object servers with
no presentation services at all.

What Does It Take to Be an Application
Server?

As a result of the two markets converg-
ing, it is clear that we need a new definition
of what is required to be an application
server. Are presentation services impor-
tant? Are connectivity services a require-
ment? Should the server come with inte-
grated development tools?

The following section outlines where I
believe the market is headed and explains
the different component parts.

Where the Market Is Headed
I believe that customers are looking for

an application server that combines all the
services shown in Figure 4.

The rationale for each of the compo-
nents follows:
• Presentation services: Since it is the

Web and thin client applications that are
driving application logic into the middle
tier, it is clear that application servers
require presentation services to generate
dynamic HTML pages; provide HTTP ser-
vices or interface to an existing Web serv-
er, and state and session management;

and support thin Java clients, including
providing application destribution and
updating for applications that are
deployed outside of a browser.

• Distributed object services: These are
clearly required in the form of EJB support
to allow the easy wrapping of business
logic and other components in a reusable,
remotely accessible, secure object. This
will include naming services and an ORB
to allow IIOP-based communications.

• Distributed transaction services:
These are required to coordinate trans-
actions across EJB objects. For example,
if you create an order form that is using
an order object and an order detail
object, you will need to use a transaction
that wraps both objects when saving a
new order. This service should also sup-
port transactions across heterogeneous
databases (e.g., simultaneously update
tables in both Oracle and DB/2).

• Application services: These should pro-
vide additional services to make creation
of rich Web applications far easier. Exam-
ples of what should be provided here
include e-mail send and receive with trig-
gers for incoming e-mail, full text retrieval,
content management and dynamic pub-
lishing for Web pages and applications
such as product catalogs and online
research, workflow and push capabilities.

• Connectivity services: These are clearly
required to allow the newer Web or thin
client applications to leverage existing
data and applications. They should pro-
vide an open architecture for adding
user-defined data connectors as well as
off-the-shelf connectors to SAP, People-
Soft, Lotus Notes, CICS, MQ Series, Tuxe-
do, etc.

• Enterprise deployment services: These
are required for scalability, reliability,
manageability and security. Features are
load balancing, both server- and session-
level failover, a management console and
APIs, an SNMP agent to allow inclusion in
third-party management systems and a
complete security system including
authentication against existing directo-
ries (LDAP, NT, certificates, etc.), encryp-
tion and access control.

• Integrated development tools: At a min-
imum, these are required to help develop-
ers create HTML applications that fully
utilize the runtime features of the presen-
tation services, and to deploy EJBs. How-
ever, customers are looking to simplify
their development of these more sophisti-
cated, multitier distributed applications.
That requires a toolset that covers all of
the services and that can be used by both
expert Java programmers and 4GL pro-
grammers who know products such as
PowerBuilder, Delphi and Visual Basic.

Enterprise JavaBeans (EJB)
EJB is an important specification in a number of ways:
• It defines a standard, vendor-independent way of writing middle-tier objects and

provides standard interfaces for bean writers to access services for naming, security,
transactions, etc.

• It makes the bean writers’ job much easier as they do not need to be aware of dis-
tributed object/remote protocols, transactions, threads, security and state.

• It clearly separates the roles of the bean writer, application developer,
container/server developer and the bean deployer/administrator. Standard inter-
faces govern the interaction between the different roles.

It’s worth noting that EJB is a long-term vision. In version 1.0 the specification is
immature and leaves many key areas undefined. Most players expect that the standard
won’t reach the level of maturity that will make it widely usable until version 2.0.

S
ilv

e
rS

tre
a

m
F
o

cu
s

42 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Where the Players Are Today
Figure 5 shows three different types of

players.
Examples of pure presentation servers

are Allaire’s ColdFusion and Microsoft’s
Active Server Pages (ASP). Examples of

pure object servers are products like Iona,
Oracle and WebLogic. Few products com-
bine both presentation and object services
in an integrated package. SilverStream and
NetDynamics are examples.

It should be pointed out that no vendor

has all the attributes required today, partic-
ularly as it will most likely require version
2.0 of the EJB spec to achieve this, and that
is not yet available. Clearly, the right-hand
group shown in Figure 5 is nearest to where
the market is headed.

The Importance of Neutrality
Application servers are expected to inte-

grate with the wide variety of existing archi-
tectures and standards that exist in today’s
typical customer environment. These
include:
• Multiple platforms: UNIX and Windows

NT
• Multiple relational databases: Oracle,

DB/2, Microsoft SQL Server, Sybase,
Informix

• Multiple distributed object standards:
CORBA, DCOM, EJB, RMI

• Multiple applications and legacy environ-
ments: SAP, PeopleSoft, Lotus Notes,
CICS, MQ Series, Tuxedo, etc.

Based on the foregoing, customers are
looking for application server vendors that
are neutral and don’t have a particular bias
toward an operating system, data source,
etc. Several of the application server ven-
dors don’t meet this requirement and con-
sequently don’t provide the necessary level
of support for other competing products.
This is generally considered a major draw-
back.

Summary
This market has undergone substantial

change in the last 12 months. It is still
maturing and will probably take another 12
to 18 months to sort itself out. Most
companies will be evaluating and deciding
on their standards during 1999 and 2000 as
this is a time-critical technology that must
be used now to remain competitive.
Although a single winner has not yet
emerged, the leaders are clearly separating
from the pack based on vision, technology,
ability to execute, support services and
strength of installed base. A clear require-
ment is that the product must integrate all
of the above services, in particular offering
strong presentation services combined
with strong distributed object and transac-
tion services.

About the Author
David Skok, the chairman and founder of
SilverStream Software, Inc., a company he formed
in June of 1996, holds a bachelor of science honors
degree from the University of Sussex, England.
He can be reached for questions and comments
at dskok@silverstream.com.

Figure 2: Third-generation Web application servers

Figure 3: Two markets collide

Figure 4: The next generation of application servers

Figure 5: Where the players are today

dskok@silverstream.com

S
il

v
e

rS
tr

e
a

m
F
o

cu
s

43VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Pervasive
www.pervasive.com/sdk-jd

44 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

To put it bluntly, Silver-
Stream 2.0 sets a new
standard for large-scale
Web development and
deployment. We first
looked at the product in

June 1997 when they were
the newest entrant in the application serv-
er market. It lacked many enterprise fea-
tures such as scalability, fault tolerance and
CORBA support. In addition, it only offered
advantages in the area of Java client devel-
opment and deployment. With 2.0, things
are quite a bit different.

SilverStream 2.0, released in October
1998, not only fulfills the early promise of
the 1.0 product but includes innovative
approaches for writing thin-client, HTML
applications utilizing server-side Java busi-
ness objects.

The Application Server Market
The market for enterprise-class applica-

tion servers is hindered by a confused cor-
porate IS industry. Faced with impending
deadlines for completing Y2K initiatives, the
majority of the industry has been cautious
about making platform decisions for three-
tier Web-based applications. To define the
product space for application servers, we’ll
use Forrester Research’s simple definition: “a
software server product that supports thin
clients with an integrated suite of distributed
computing capabilities. Application servers
manage client sessions, host business logic,
and connect to back-end computing
resources, including data, transactions, and
content.” Given this definition, we’ll quickly
summarize how SilverStream addresses the
main application server components.

Server Architecture
The SilverStream server is written

entirely in Java and can be deployed on NT,
Solaris and HP platforms. The overall serv-
er architecture, shown in Figure 1, can be
divided into three parts:

Server Front End
By default, SilverStream includes a high-

performance HTTP 1.1 Web server that sup-
ports Secured Socket Layer 3.0 for encryp-
tion. However, SilverStream can easily coex-
ist with other industry-standard Web
servers, such as those by Microsoft and
Netscape, by using the included SilverJunc-
tion plug-ins for URL redirection. For user
authentication, the server integrates well
with LDAP, JNDI, NT Security, NIS+ or X.509
digital certificates. SilverStream 2.0 also
has solid support for building and commu-
nicating with CORBA objects via IIOP.

Application Logic Tier
From a Java application server stand-

point, SilverStream includes full support for
invoked or triggered business objects,
servlets, state and session objects, HTML

generation, table version tracking, access
control and CORBA objects.

Database Access Tier
SilverStream uses connection pooling

and sophisticated transaction management
to relational databases via native JDBC dri-
vers. All industry standard DBMS platforms
are supported, including DB2, Oracle,
Sybase, Microsoft, Informix, SQL Anywhere,
Access and others. For performance pur-
poses, asynchronous fetch-ahead and con-
figurable data buffering is included. In addi-

PRODUCT REVIEW

SilverStream 2.0
by SilverStream Software

SilverStream attacks complex Web application
development and deployment in version 2.0

by Steve Benfield & Brad Cooley

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

SilverStream 2.0
SilverStream Software
One Burlington Woods, Suite 200
Burlington, MA 01803
www.silverstream.com
Phone: 781 238-5400 Fax: 781 238-5499
info@silverstream.com
Price: $8,500 per processor for NT or UNIX

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

Figure 1: SilverStream’s server architecture

S
il

v
e

rS
tr

e
a

m
F
o

cu
s

45VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Kuck &
Associates

www.kai.com

46 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

tion, SilverStream includes the Fulcrum
Search engine with extensive, integrated
support for full text queries. Data Version-
ing is also built-in.

Server Deployment Options
SilverStream applications can be

deployed on a single server (NT or Unix) or
clustered. Clustering provides near-linear
performance scalability and a separate
cache manager coordinates server-cached
data for the cluster. SilverStream includes a
dispatcher to route incoming client
requests to the cluster (third-party dis-
patchers are also supported). Multiple dis-
patchers can be used to further eliminate
the possibility of a single point of failure. In
addition, the SilverStream server includes
load balancing and session-level failover
mechanisms.

SilverStream Designers
From a developer’s perspective, perhaps

the single most compelling reason to
choose SilverStream is the integrated devel-
opment environment, or “designers.” Devel-
opers familiar with IDEs such as Power-
Builder will feel right at home bouncing
around the Page Designer, Form Designer,
Object Designer and other designers. The
designer consistency is especially surpris-
ing in the Page Designer, the mechanism for
creating thin-client HTML applications
(more on the Page Designer later).

All designers offer the familiar event-dri-
ven programming model favored by prod-
ucts such as Visual Basic and PowerBuilder.
The developer has full GUI control over a
wide range of control options, most inherit-
ed from standard AWT classes. Double-
clicking on any control takes you to the
Java programming editor, where all Java
classes are supported along with hundreds
of prebuilt SilverStream Java classes and
helper objects. SilverStream doesn’t pack-
age their own version control system, but

they do include built-in support for PVCS
and SourceSafe. The Form Designer, used to
create client-side Java applications,
includes a debugger with all the expected
features, including breakpoints, step-
through and step-over. The Debugger does-
n’t work on the server; obviously, this is a
deficiency. In SilverStream’s defense, cer-
tain debugging APIs are still incomplete
within the current Java specification or
fragile enough to prevent SilverStream from
making a tremendous effort at round-trip
debugging. We expect to see round-trip
debugging (Solaris, Microsoft, HPUX) in the
3.0 release of the product.

To the SilverStream server, the design-
ers are simply additional users, making it
easy to impose access control and other
security restrictions on different sets of
developers.

SilverStream Forms – Client-Side Java
SilverStream builds on the award-win-

ning Form Designer of 1.0 by adding capa-
bilities for dynamic hierarchical views as
well as the ability to deploy SilverStream
Java client applications outside a browser
using the Silver JRunner runtime Windows
executable. SilverStream also generates
Java 1.1 applets and can be used in any
browser that supports it. SilverJRunner
deployments actually run much faster than
applet deployments because they don’t
perform the bytecode checking needed for
the browser’s security sandbox. In addi-
tion, SilverJRunner handles caching of
applications to the client.

SilverStream’s client-side applications
consist of forms and views. When a form is
created, it’s assigned a default data source
– most likely a table, although it could be
some business object. SilverStream gener-
ates all the code needed to automatically
retrieve data when the form is run on the
client machine, and columns are easily
bound to any data source. Two really nice

controls that are included are a data-aware
choice control for binding columns to
lookup tables and a full HTML editor that
can be bound to columns in your database.
The HTML Edit Control allows you to build
applications that allow end users to build
their own HTML pages. A good example of
this would be building product description
pages. The editor is surprisingly rich in
functionality and is easy to use.

In addition to forms, SilverStream has
views. Think of a view as a data-bound hier-
archical grid control. That is, you define
column lists as you would for a grid control,
but you can have unlimited levels of mas-
ter-detail hierarchy. In addition, you can
have multiple bands per level and multiple
row selection, and to top it all off, it’s an
updatable control. It also allows you to
define expressions for any column so you
can perform tasks such as multiplying two
columns and summing the totals.

Handling Master-Detail Processing
While SilverStream does have all of

these nice controls, what really makes it
productive is how it allows you to create
master-detail forms. For example, if you
want to build a customer form that has a
tab folder with customer orders and con-
tacts, the form can be built with the wiz-
ards. Since SilverStream is aware of your
referential integrity settings (primary and
foreign keys), it knows how to relate forms
to views. If you drop an order view on the
customer form, it builds the WHERE clause
for you. Then you’ll see only the orders for
the particular customer you’re working on.
If you take that same order view and place
it on an employee table, you’d see only the
orders that the employee sold. While Sil-
verStream takes care of a lot of this for you,
you can change things through the proper-
ty sheets or through programming.

Three-Tier Data Caching
A final note on forms and accessing

data: as SilverStream downloads a form to
the user’s machine, it’s already executing
the query for that form (assuming the
developer has chosen an automatic query).
This means that as soon as the form instan-
tiates on the user’s machine, the data is
most likely already streaming from the
database to the application server. A thread
on the server loops and retrieves 150 rows
at a time from the database. Simultaneous-
ly, the client requests 100 rows at a time in
a background thread. As soon as data is
moved to the client, it’s cleared from the
server. What this means is that the amount
of data on the server is always kept to a
minimum. There’s no need to load 5,000
rows to the server and then send them
down to the client. The client gets the first

Figure 2: SilverStream’s HTML generation

S
il

v
e

rS
tr

e
a

m
F
o

cu
s

47VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

100 rows of data as fast as possible, while at
any one time there may be only 500 rows
sitting in the server as this data-caching
mechanism does its job. If a certain form
really needs all 5,000 rows immediately, a
simple method call to the data cache
changes the client-side retrieval to 2,000
rows at a time in a foreground thread. This
entire caching mechanism is automatic and
the developer doesn’t need to code any-
thing special to use it. The result is high
data throughput as data passes each of the
three tiers. It also results in faster response
time in Java applications.

Rich Application Server Services
SilverStream makes building parti-

tioned, distributed business objects a
much more intuitive process by providing a
designer to create stateless, server-side,
triggered business objects that respond to
invoked requests, database-triggered
events, POP3 mail events, scheduled events
and/or standard servlet requests. In addi-
tion, SilverStream Data Source Objects
(DSO) are easily built to provide a clean
middle-tier partition to relational and non-
relational data sources, such as SAP, Peo-
pleSoft, Lotus Notes and CICS. In fact, once
created, developers code against DSOs the
same way they code against relational data
sources – the development environment
treats data source objects just like tables
and makes developing front-end apps
against components pretty easy. Addition-
ally, SilverStream includes support for per-
sistent business objects.

Also new in 2.0 is SilverStream’s data
connector wizards. These wizards allow for
the rapid creation of DSOs that go against
SAP, PeopleSoft and Lotus Notes. Develop-
ers can also create their own data connec-
tors for various nonrelational data sources
of interest.

Page Designer – True Innovation
for Thin Client Applications

The most striking feature of Silver-
Stream 2.0 is the Page Designer, which
makes a major breakthrough in creating
HTML applications by allowing the devel-
oper to use a designer environment much
like Visual Basic’s. It’s complete with
object-oriented server-side Java, event-dri-
ven programming, WYSIWG design fea-
tures, control properties and methods. If
you’ve built HTML before using scripting
tools or even HTML editors, then you’re in
for a treat. It’s hard to believe that someone
didn’t come up with this before.

During development, you define data
sources (such as SQL or SilverStream’s
Data Source Objects), place controls on the
page and bind them to columns, set prop-
erties, write server-side Java, write client-

side JavaScript and basically do everything
you need to do in one place.

As shown in Figure 2, all page controls
render appropriate HTML under the stan-
dard Java servlet model. In addition, Silver-
Stream includes built-in support for an
extended event model, URL redirection,
persistent session objects, access to serv-
er-side business objects, JavaScript helper
objects, subpages, DataViews and frame-
sets. For anyone trying to build business-
oriented HTML applications, the Page
Designer alone makes SilverStream worth
evaluating. Since all page controls are
beans, developers are able to extend them
and create their own customized versions.
Applications that we’ve seen include allow-
ing controls to be enabled/disabled, there-
by generating pure text or an input field
during runtime, DHTML generation and
XML generation.

The Page Designer provides amazing
level productivity. Because SilverStream
handles master-detail transaction process-
ing in pages similarly to forms, building
complicated three-tier master-detail pages
is a snap. SilverStream also handles full ses-
sion and state management; passing data
between pages is trivial and can easily per-
sist across servers. In the persistent ses-
sion object demo, we were able to com-
pletely shut off the server and reboot it,
then hit Next on our page, and the applica-
tion continued without a hitch – very
impressive!

Other Features
In addition to all the features listed

above, SilverStream includes controls for
file upload/download, the Visigenics
CORBA IDL toolkit, a very powerful server
management console, extensive data-bind-
ing capabilities, an authenticated version of
Sybase SQLAnywhere, the ability to create
JavaBeans and JARS, and a powerful mail
API. SilverStream’s unified security model
can be applied to any component that is
built, including row-level security against
the database.

Pricing
SilverStream is priced at $8,500 per

processor, regardless of platform or num-
ber of users. In published performance
specifications, SilverStream servers sup-
ported anywhere from 400 to 100,000 users,
depending on application complexity and
frequency of use. Development versions of
SilverStream are available at $495 for a sin-
gle developer, $2,495 for five developers
and $4,995 for 10. With a full-priced deploy-
ment server, any number of developers can
work at one time, making the cost per
developer very trivial for larger organiza-
tions.

What We’d Like to See in the
Product

This version of SilverStream is so
feature-rich, it lacks very little for the
database-centric Web application develop-
er. Nevertheless, we’d like to see some
improvements in future releases, including
a full-featured report writer, explicit XML
support, a more powerful database admin-
istration tool, a round-trip debugger and
better application documentation tools. In
addition, SilverStream needs Enterprise
JavaBean support. Luckily, this is under
development and is slated to go into beta in
late spring. With their EJB support,
SilverStream will also be opening the server
to third-party development tools such as
Café and JBuilder. Likewise, SilverStream
can be used as a front-end presentation
server to existing CORBA and EJB servers.

Conclusions
SilverStream is definitely going to be

making the short list of application server
platforms in the years to come. The tremen-
dous talents of the development and man-
agement teams combine to make Silver-
Stream a logical choice for developers who
need the power to easily develop database
applications to any data source, deploy on
Unix or NT platforms, remain browser
agnostic and desire the power and future
promise of the Java language. A truly inno-
vative offering, SilverStream’s many
strengths far outweigh its shortcomings. In
an industry ready to explode, SilverStream
raises the bar once again.

About the Author
Brad Cooley and Steve Benfield are principals
with Bondi Software, a software consultancy.
Both have extensive experience with corporate
business software development. Brad is in
Greensboro, North Carolina, and can be reached
at brad@bondisoftware.com. Steve is based in
Atlanta, Georgia, and can be reached at
steve@bondisoftware.com.

brad@bondisoftware.com steve@bondisoftware.com

“SilverStream
makes building

partitioned,
distributed

business objects
a much more

intuitive process.”

S
ilv

e
rS

tre
a

m
F
o

cu
s

48 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

AQ

AQ
AQ

AQAQ

AQ

David Dewan
VP, product strategy SilverStream

JDJ: How is Java used in SilverStream?
Dewan: Java is used throughout SilverStream. The appli-
cation itself is written in Java completely. It is now over a
million lines of code., so it is one of the largest, if not the
largest, commercial Java applications that exists. It is a full
application server as well as a full development environ-
ment. All of the development tools, all of the interfaces,
also are built in Java. The final thing is that Java is the pro-
gramming language that our customers use. Since Silver-
Stream is a development environment for building applica-
tions, the programming language in SilverStream is also
Java. Of course, that ties in very nicely because you can
build an application, just compile it and use it immediately.
You don’t have to go through the normal linking steps and
so on. We found it a very productive environment. Our
developers – and they are pretty conservative developers
– estimated a 2 to 1 improvement in time to market doing
SilverStream and Java as opposed to doing it in C. We have
done a lot of C code over the years, so I think that assess-
ment is probably correct.

JDJ: You have a new release. Was it at the Expo? Did you
debut it?
Dewan: Just a little before the conference. So Silver-
Stream version 2 is out now and of course in any version 2
you have a lot of features. The important areas were in
scalability and reliability. Scalability... allows you to build a
cluster of SilverStream Servers. So you put together an
application that gets more popular than you thought – and
that happens a lot on the Web – you can simply add
another SilverStream server or three or four or five. And it
scales almost linearly. We will get almost five times the per-
formance out of a five-server cluster as with a single server.

Of course another benefit of that is reliability. If you are
running a cluster of servers and one of them goes down,
then the other three or four or whatever can continue run-
ning the application. And that’s only part of it in terms of
reliability. We have server failover, which means if a server
goes down the applications can keep running. We also put
in SilverStream 2.0 session-level failover, which means if
you are halfway through entering your book order, for
example, and a server goes down, the session itself from

all the customers or users who are on that particular com-
puter will get transferred with their session state informa-
tion to another server and then the work will continue as
usual. So that was certainly one of the big features in 2.0 –
enterprise scalability.

The other thing in terms of major features we found is
connectivity. We found that an application server is a piece
of infrastructure. It needs to connect not just to relational
databases for new applications but also to all the existing
data sources. So for example, we added in DB2 connectivi-
ty for databases. We also added connectivity to Lotus
Notes, for SAP, and for PeopleSoft and the ability in fact to
connect to any data source. You just write some code in
Java and you can connect to the data source. From the
client developer’s point of view, it looks just like a relational
database table. So it is a very familiar way of programming
but can connect to just about anything that’s out there.

JDJ: What kind of applications are your customers
developing?
Dewan: Well, it’s all over the map. They have financial
applications, accounting applications, workflow applications,
distribution, some that are
working internally within a
company, perhaps monitoring
new products or drug testing,
for example, and other prod-
ucts that are doing e-com-
merce and are running literal-
ly all over the world. And we
have two airlines that are
doing scheduling and ticket
sales over the Internet with
SilverStream applications. It’s a
very wide range from internal
control and workflow applica-
tions out through Web and e-
commerce applications that
run all over the world.

JDJ: What makes your prod-
uct more appealing to the
consumer? What are they
going to look at and say, wow, that’s what I’m looking for?
Dewan: One is the ability to build very large scalable
applications. We found over and over again that an applica-
tion that starts out for a certain sized audience gets loose
and ends up with many more. For example, we have an
application in the state of Texas to monitor children that are
placed in foster homes. That was originally designed to
work for just 12 judges. It turned out to be very popular; it
is now used by 300 judges and the people who work in
the court system all over the state, and of course they
needed to scale up the support for that application. It is

used all day by hundreds of hundreds of users throughout
the state. So scalability, reliability, the ability to build large
applications are important.

The second is more related to the development side.
SilverStream has a full set of development tools for build-
ing Java-based forms, for building the Java logic – a color-
coded editor and compiler and so on – all built in as part
of the SilverStream product. And time-to-market is so
important now, whether it might be time-to-market for an
internal application or for something that’s really going out
to the market. It is always important to get these done
quickly, to get it done well, then to be able to change it, to
be able to modify it, to enhance, to add to it, to do that just
about at real time. So the development tools that are built
into SilverStream, I would say, are the second major area in
terms of appeal of the product. You see it at the booth here
at the show and see it on the Web site in terms of how that
actually works.

The third big area has to do with business objects, the
ability to encapsulate logic, such as server-scheduled
objects connecting into a mail server. We’ve got CORBA
support because there is plenty of CORBA in the world and

the more enterprise an applica-
tion is, the more likely it is to
use CORBA. We put full
CORBA support into the ver-
sion 2.

And the final feature I think
is the broad connectivity. Every
single customer has a variety
of data sources ranging from
traditional databases, many dif-
ferent brands usually, to the
more nontraditional sources.
That could be CICS or MQ
Series or it could be applica-
tions like SAP and PeopleSoft.
SilverStream provides the abili-
ty out of the box to connect to
a wide variety of data sources.
Those have been the things I
think that have been most
appealing. Couple that with

support that’s worldwide, the strong training that’s available
– again worldwide – and a management team that has
been through this before. So on the one hand we are not a
group of 25-year-olds that can work all night. No, our all-
nighters are behind us. But on the other hand, we have
been through the experience of building a large successful
software company and understanding the development
process and so on, and I think certainly our large customer
base. That is very important too. They know they are deal-
ing with a management that understands their needs and
concerns and has a track record of dealing with this.

SYS-CON RADIOSYS-CON RADIOSYS-CON RADIO S

YS
-CON

R
A

D
IO

w
w

w
.s

ys-con.com

INTERVIEW
Broadcast live at Java Business Expo in the Jacob Javits Center in New York City,

SYS-CON Radio’s Chad Sitler spoke with David Dewan of SilverStream

“Since SilverStream
is a development

environment
for building

applications, the
programming

language in
SilverStream
is also Java.”

S
il

v
e

rS
tr

e
a

m
F
o

cu
s

49VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Inprise
www.inprise.com

50 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Java
Developers

Journal

SYS-CON
Interactive

http://www.JavaDevelopersJournal.com 51Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 3 1999 •

Java
Developers

Journal

SYS-CON
Interactive

52 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Okay, you’ve spent a year building
a Java app that will take over the market,
but since Swing wasn’t ready and you
didn’t have time to wait, you used the
Abstract Windowing Toolkit (AWT). Now
Swing is shipping, and any app using
AWT is a dinosaur. You’ve got to convert
your work – and fast. Here’s how, step by
step.

To follow these procedures you need to
know Java and AWT fairly well. If you used
a visual tool to build your user interface
and aren’t familiar with concepts such as
components and containers, brush up on
the basics first. Keep Swing’s docs handy
and you can probably pick up what you
need to know about it as you go.

First, in each of your source files using
AWT add:

import com.sun.java.swing.*;

If you’re using panel borders, also add:

import com.sun.java.swing.borders.*;

If you’re using the Standard Extension ver-
sion of Swing, remember to substitute “javax”
wherever you’d use “com.sun.java” – except,
however, for the import statements, where
you change “java.awt.” to “com.sun.java.-
swing.J”. Be sure to include the trailing “.” in
“java.awt.”. If you’re not concerned about
name space collisions, you can just change
“java.awt.” to “J”. Then you can change any
other occurrences of “Frame” to “JFrame”,
“Dialog” to “JDialog”, “List” to “JList”, etc. In
general, you simply need to add a “J” to the
type. The AWT component’s member func-
tions are almost the same for Swing. For relia-
bility, don’t mix AWT and Swing components;
instead, convert them all to Swing.

After you’ve added “com.sun.java.swing.J”
to “Checkbox”, change “JCheckbox” to
“JCheckBox”, with a capital “B”. Next, replace
any JChoice with JComboBox, and any Check-
boxes (which are actually radio buttons) with

JRadioButton. Then replace each corre-
sponding CheckboxGroup with a Button-
Group.

You also must replace any JChoice with
JComboBox, change “getState()” to “isSe-
lected()” and “setState(state)” to “setSe-
lected(state)”.

For in-source files built with Visual Café
you must delete any lines that begin with
//{{ or //}}. Then, in the constructor,
remove:

setLayout(. . .);
addNotify();
resize(. . .);
setBackground(new Color(. . .));

And for each component remove:

component.reshape(. . .);
component.setForeground(. . .);

and if present

component.setLayout(null);

Don’t delete any other setLayout() calls.
Then change “new BorderLayout(0,0)” to

“new BorderLayout()”. If the show() member
function was automatically generated,

SWING

How to Convert from
AWT to Swing

Will your Java code FINALLY fulfill the
“write once, run anywhere” promise?

by Doug Porter

LISTING 1

void addListeners () {
Window lWindow = new Window();
addWindowListener(lWindow);
Action lAction = new Action();
// add one action listener for each object
// for example, if you have an OK and CANCEL button,

// you might use the following code
okButton. addActionListener(lAction);
cancelButton. addActionListener(lAction);

}

class Window extends java.awt.event.WindowAdapter {
public void windowClosing (java.awt.event. &
WindowEvent event) {

Object object = event.getSource ();
// replace Interaction with your class name
if (object == Interaction.this)

Interaction_WindowClosing (event);
}

}

class Action implements java.awt.event.ActionListener
{

public void actionPerformed(java.awt.event.Action
Event event) {

Object object = event.getSource();
// if you have OK and CANCEL buttons, then you
// need to create the xClicked methods

if (object == okButton) {
okButton_Clicked(event);

}
else if (object == cancelButton) {

cancelButton_Clicked(event);
}

}
}

void Interaction_WindowClosing(Event event) {
hide();

// only call System. exit() if you’re closing your
application

System. exit (0);
}

remove it, but if you created your own code to show(), leave it and be
sure to override setVisible() to call your code. Next, change
“JList(0,false)” to “JList()” and change “FlowLayout(FlowLayout.CEN-
TER,5,5)” to “FlowLayout()”.

In the parameter for event-handling functions, such as a button
click or menu item, change “Event” to “java.awt.event.ActionEvent”
and replace any symantec.itools.awt components with the appro-
priate Swing component.

For example, if you’re using TabPanel, replace it with JTabbedPane.
Symantec’s components don’t map closely to Swing components.

Also, change the order of component initialization so all com-
ponents are added depth first. This means all components in a con-
tainer must be added before that container is added to an enclos-
ing container. Just look for calls to “add” and arrange them so the
innermost appear first and the outermost last. Then replace any
AWT listeners and handleEvent methods with Swing listeners.

Add a call to addListeners() in the constructor. Listing 1 con-
tains some example code.

For containers with a BorderLayout, change:

container.add(“Center”, component);
to:

container.add(component, BorderLayout. CENTER);

Change East, West, North and South the same way.
For readability you may want to delete “com.sun.java.swing.”

except in the import statements. Pay close attention to the Swing
threading rules. Swing components don’t automatically add scroll
bars as needed. If you want a component to scroll, first add the
component to a JScrollPane, then add the scrollpanel to the con-
tainer. Here’s an example:

JScrollPane scrollPane = new JScrollPane ();
scrollPane. getViewport(). add (myComponent);
myContainer. add (scrollPane);

In some Swing containers, including JApplet, JDialog, JFrame,
JInternalFrame and JWindow, you can’t use add(), setLayout(), etc.,
directly. Instead, use getContentFrame() to get the right container.
This is one of the few serious design errors in Swing. Set a layout
explicitly for the container. The code used to handle it looks like
this:

Container c = myContainer. getContentPane ();

c. setLayout (new BorderLayout ());
c. add (myComponent, BorderLayout. CENTER);

Don’t forget that BorderLayout now has constants, such as CEN-
TER and SOUTH, which are used for positioning in place of the old
string literals. These constants are now the second parameter to
add(), not the first.

In AWT applications there were advantages to laying out your
components in the addNotify() member function. Lay out Swing
applications in the constructor, as you always have for applets.
Remember to lay out inner containers first.

Although you should be able to set up a ListModel or just use
DefaultListModel with JList, in practice it seems to be more reliable
to maintain a separate data Vector for each JList. Pass that Vector
to the JList constructor. When you want to add, insert or delete
data in the JList, make the changes to your Vector. Then reset the
JList’s data model to the changed Vector using setListData(). It’s
important to make changes only to the Vector that you passed to
JList’s constructor. Be careful that you don’t accidentally pass a dif-
ferent Vector to setListData(), or it won’t work.

To add an item to a list, you’ll use code such as:

JList list;
Vector listVector;

public MyClass () {
listVector = new Vector ();
list = new JList (

}

void addItemToList (String s) {
listVector. addElement (s);
list. setListData (listVector);

}

After you add all your components to their containers, call
pack() on the outermost container. Do this before you do anything
that needs the size of the container, such as centering it on the
screen. Make sure Swing is in the classpath and run your applica-
tion. You should see how it looks in Swing, and it should look about
the same on every platform. Now your Java code is finally “write
once, run anywhere”!

About the Author
Doug Porter is cofounder and director of research and development for DeNova,
Inc., manufacturer of the Java installer J’Express. He has more than 19 years’
experience as a professional software engineer with three years experience in
Java. He’s just finishing his third commercial Java application. Doug can be
reached at dporter@denova.com.

53VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

CF
Ad

dporter@denova.com

• VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal54 http://www.JavaDevelopersJournal.com

Spaghetti code, sloppy
algorithms, irrelevant
code execution, dead
code and so on can all
lead to poor application
performance. No matter

how much planning goes into
the design of an application, there always
seem to be some gray areas where code per-
formance runs slower than expected or
doesn’t execute at all. If you’ve ever encoun-
tered this, ever wondered how fast your
application’s functions and events are really
executing, or if they are executing at all, then
NuMega’s DevPartner for Java is a set of
tools you should definitely look into.

NuMega is best known for software and
system debugging tools, such as SoftICE and
BoundChecker. DevPartner for Java is a suite
of tools that will help you analyze the perfor-
mance of your application, discover where
performance problems might be occurring
and if the code was tested at all. It also offers
feedback on your application’s thread activi-
ty. This suite consists of three products:
TrueTime, TrueCoverage and JCheck.

Earlier versions of the DevPartner for
Java worked only with Microsoft’s version of
Java. At the time this article was written, you
could use both the Java Vir-
tual Machine (JVM) and the
Microsoft Virtual Machine.
For the JVM, DevPartner is
compatible up to JDK 1.1.7a.
As a bonus, both TrueTime
and TrueCoverage aren’t
limited to analyzing applica-
tions written in Java; they
can also analyze programs
written in C++ and Visual
Basic, as well as Java class-
es, DLLs and ActiveX com-
ponents.

DevPartner comes on a
CD and the installation is
straightforward. NuMega
uses InstallShield for the

installation process, and there’s a menu so
you can choose which products you wish to
install. By products, I’m referring to True-
Time, TrueCoverage, JCheck, the Microsoft
Java Virtual Machine and Sun’s Java Soft-
ware Developers Kit 1.1.7a.

The Test of Time
TrueTime comes with an intuitive user

interface, as illustrated in Figure 1. The Pro-
ject Pane on the far left contains all the
active files pertaining to TrueTime projects
including all the Java classes that are used.
The pane on the right is where all the timing
information for the sessions is displayed.
The figure shows there are two session win-
dows open. The name of the program that
was executed is displayed as part of the
information on the session window’s caption
bar. If you ran a Java applet, it would contain
the name of the applet viewer. The session
window contains panes of its own. The left
pane is for filter information and lists all the
functions used by the tested application, as
well as the “Top 20” functions. These are
Source Functions, Functions, Called Sources
Functions and Called Functions. In order to
view the source functions, you need to have
a copy of the program’s source files.

An examination of the information on the
session windows shows each window with
three tabs: Function List, Source (with the
name of the source file) and Session Summa-
ry information. When examining the Func-
tion List, double-click on any of the listed
functions and you will receive detailed infor-
mation about the function in a Functions
Detail dialog window. It details all the parent
and child functions and methods the func-
tion uses, how many times it uses them and
the average time the function was executed.
The Source tab describes source code for
each function you’re examining, how many
times the line of code was executed and the
percentage of time TrueTime spent execut-
ing the line as well as any child functions it
may have branched to.

Since TrueTime works with various
JVMs, you can perform benchmark tests to
determine if there are any coding inefficien-
cies with different VMs. Not every VM is cre-

ated the same nor are they all
equal. TrueTime’s Session Sum-
mary is extremely useful to get all
the Java classes, their function
and the VM in one report.

Many developers have the lat-
est and greatest computers;
therefore, their applications seem
to run at light speed on their sys-
tems compared with their clients’
slower systems. This is where
TrueTime really shines because it
doesn’t matter if you’re using a
Pentium II 450 MHz system or a
Pentium 75 MHz system. All per-
centage calculations are based on
the CPU cycle times of your
processor; thus your results will

PRODUCT REVIEW

NuMega DevPartner for Java
by CompuWare NuMega

Find out how fast your applications
are really executing

by David Jung

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
NuMega DevPartner Studio 1.2
Compuware NuMega
9 Townsend West
Nashua, NH 03063
Phone 800-4NUMEGA
1 603 578-8400 (International)
E-Mail: info@numega.com
Web: www.numega.com
Price: $599

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

Figure 1: TrueTime showing times for the same applet using JVM and Microsoft’s VM

55VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

MecklerMedia
www.mecklermedia.com

be the same no matter what processor you
run your tests on. This is very useful for
establishing standardized benchmarks.

Covering the Spread
In many ways, TrueCoverage’s interface is

similar to its counterpart, TrueTime. It
sports the same Explorer interface that many
tools do nowadays. The left pane, the Project
Pane, contains a tree-view of the elements
that make up the active project. In the right
pane, all the information relevant to True-
Coverage appears. An Output window pro-
vides feedback for what system resources,
such as DLLs, are used and where in memo-
ry they are stored. Another window, a ses-
sion window, also has the Explorer metaphor.
The left pane is called the Filter pane and it
provides a tree-view of files that make up the
project being tested – EXEs, DLLs and Java
classes. The right pane is called the Session
Data pane. This pane is the heart of True-
Coverage’s reporting. The top part of this
pane has a progress bar that illus-
trates the number of lines and
functions that have been executed
during the testing phase. There
are a number of tabs that help fur-
ther back down session informa-
tion, like a list of functions, view
source code and a summary sheet
that provides statistical informa-
tion about the session report.

Just like TrueTime, TrueCover-
age will also report on any exe-
cutable or resource file used by
the project, such as ActiveX Con-
trols and DLLs. In addition, if you
have source code for the project’s
components, it will provide feed-
back on this usage percentage
and the number of lines executed.
If you double-click on the Java
class, the source code will be displayed in
the Source code tab in the Session Data pane
so you can see exactly what line of code was
executed and how many times it was exe-
cuted.

The true power of TrueCoverage is its
ability to compare and merge multiple ses-
sions with one another. Why is this impor-
tant, you ask? Within an application’s devel-
opment cycle, developers need to be sure
that when they make a change to a program,
they test the functionality they just created,
added or modified. The first time TrueCov-
erage is run and a test script is used against
it, the generated report becomes the bench-
mark. As changes and enhancements are
made to the application, test scripts must be
modified and performed again. Each new
report will cover which procedures were
run, which ones weren’t, how many times
the functions, procedures and methods were
used, and so on. You can then merge these

results with previous reports to determine if
the application is executing the correct
logic. Unfortunately, it doesn’t tell you in
what order the functions or procedures were
executed, which can be helpful in determin-
ing execution order. In event-driven pro-
gramming, code doesn’t always execute in
the order you think it does.

Check, Please!
Now for something completely different,

but extremely useful. At first glance JCheck
might seem a bit awkward, but that’s
because most developers have never seen a
thread model, even though they may under-
stand threads. The folks over at NuMega
obviously have, as illustrated in Figure 2,
because the purpose of JCheck is to provide
graphical representation of a Java class’s
thread activity. It also detects and displays
events in the order they were executed, and
detects and reports Java thread errors and
thread leaks.

The graphics representation of thread
activities is displayed in a window called the
Thread Inspector. It provides information
about the Java class’s state and interaction
with Windows threads, synchronization
objects, thread groups and other threads.
This is very useful in determining problems
with thread synchronization and timing
issues, thread problems like deadlocks and
thrashing, and run-time issues. To find out
more about a thread object, simply place
your mouse over the object and a pop-up
window displays some basic properties
about it.

Another window, called the Session win-
dow, is used for monitoring the method
calls, class loads, thread states, context
switches, synchronization objects and
exceptions while you analyze your applet or
application. The output of this is placed into
two tabs – Results and Transcript. The
Results tab is where detailed information

about the source code’s errors and leaks are
reported. These are not errors that would be
caught when an application is compiled.
They are due to bad coding, like coding a
“double-start,” which occurs when you start
a thread that was previously stopped. Not
only does JCheck report these errors, it also
attempts to offer solutions to fix the prob-
lem. Now it’s not going to be able to offer
solutions for every problem, but it does a
good job solving most of the major thread-
ing problems.

Conclusion
The only major drawback I could find is

that NuMega does not make a version of this
suite for the Unix environment. However,
many developers have multiple operating
systems at their disposal, so this shouldn’t
be the real issue, nor should it stop you from
considering this product.

The documentation is a sparse booklet
that describes the functionality of each

product. More information is
contained in Adobe Acrobat PDF
files, but don’t expect to gain
extensive knowledge from them.
Don’t let the limited documenta-
tion fool you, though. After about
an hour with each product, I real-
ly felt I had mastered them and
was able to get the information I
was looking for. The fact that
each product links the errors it
finds to your source code is a
major advantage and a big time-
saver. For Visual J++ users, the
fact that both TrueCoverage and
JCheck have toolbar buttons for
the Visual InterDev development
interface is a nice touch.

With applications devel-
oped in components and distrib-

uted throughout the enterprise, the last thing
you want is for your application to be the
weak link in the chain. By using TrueTime,
you can isolate areas of your program that
are running more slowly than anticipated.
You can also find out which functions are
being called most often and determine if they
are running as optimally as they should.

Like all the NuMega products, all three are
solid, useful utilities. Whether you’re devel-
oping 100% Pure Java programs or applica-
tions specific to the Microsoft VM, this tool is
a must-have in any developer’s toolbox.

About the Author
David Jung is an application developer specializing
in client/server development using Visual Basic, Java
and other Internet technology. He is also co-author of
several Visual Basic books and can be reached at
Davidj@vb2java.com.

56 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Figure 2: JCheck’s thread model

davidj@yb2java.com

57VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journal

AQ AQ
AQ

JDJ: Can you give us an idea of
what you have to offer and what
you have out on the market?
Guida: ProtoView has been in the
component market for over 10 years
now. We started off with ActiveX com-
ponents, and about two and a half
years ago we got into building Java
components for professional develop-
ers. Right now we are providing a lot of

GUI components, and we just came to market with the JFCSuite,
a package of GUI components that create added value for the
JDK 1.2 and, as some of us know it, the Swing Tool Set. We
found a lot of missing holes in the package. For example, we are
geared toward professional businesses so we created some cur-
rency components, time, date, and we focus a lot on the richness
of creating some very visual effects. We have a very graphical cal-
endar with over a hundred different properties that you can set
through the customizer. We really focused on an easy API to pro-
gram, snap-in components, the reuse of it, and providing the
missing holes in the JFC.

In our JFCSuite we feel probably the biggest component in

there is our JFCDataExplorer, and that metaphor came over
from the Windows platform where you are seeing a lot of this
Explorer metaphor. We have the left-hand pane of a tree view,
the right-hand pane being a container that could be anything,
a panel, another component, a calendar. So as you are clicking
on nodes in this left-hand pane of the tree, you are displaying
some data input screens or other types of components in the
right-hand pane with a splitter bar. What ProtoView did was to
take the base JFC classes of the tree and the table in there and
we put it together into one coupled component, integrating
these two with some advanced data model views to make it
simple to add data to it through this architecture and giving that
familiar user interface of the JFC look and feel.

JDJ: Who would you consider your biggest customer base?
Mainly for the enterprise, or can someone who is just start-
ing out with Java or a similar language jump into something
like that?
Guida: When they finally buy a ProtoView component, they
are usually a professional developer solving business problems.
They are getting paid to solve a problem and have already cho-
sen Java to solve these problems. They usually don’t come to

us until a specific problem arises. Really, we are having devel-
opers when they buy our product…it is not an IDE where they
are learning it as they go. ProtoView customers are actually at a
point where they need to solve some problems and they have
to go outside their current box, be it Visual Café, JBuilder, Visu-
al Age, etc…. Our developers range from a one-man consult-
ing company to your Fortune 100 companies.

JDJ: What do you foresee in the near future for Java and
the entire Java industry.
Guida: We are very excited about the Java industry. As a com-
pany we provide added-value components, so we are actually
creating ActiveX, architecture-type components and Java com-
ponents. We are having some very large companies deploy
enterprise-type systems with either or both of our components.
We only see Java growing and maturing. Right now everyone
talks about Web applications and Web technologies, but soon it
is just going to be about application development. The lines are
going to go away and we will begin to see pure software devel-
opment; regardless of the platform or technology used to solve
the problem. I think Java is going to be the cornerstone of that.
So it is really – it is computing, it is software..

SYS-CON RADIOSYS-CON RADIOSYS-CON RADIO S

YS
-CON

R
A

D
IO

w
w

w
.s

ys-con.com

INTERVIEW
Broadcast live at the Java Business Expo in the Jacob Javits Center in New York City, SYS-CON

Radio’s Chad Sitler spoke with Dean Guida of ProtoView Development

Dean Guida
President, CEO
ProtoView
Development

Have YOU invested in banner advertising to promote
your Java products and services?
Did you get your money’s worth?

For more than three years, since its first issue, Java Devel-
oper’s Journal has served the ever-growing Java industry
as the primary print advertising medium. This year JDJ is
introducing JavaDevelopersJournal.com as THE one-
stop media center for print AND online advertising needs.
And we’re backing up our promise of satisfaction with a
full, money-back guarantee.

If you’ve been dissatisfied with the online banner advertis-
ing options open to you, try
JavaDevelopersJournal.com. Our prime ad space is
available for up to 10 advertising banners at any given
time. And your product or service will receive a FREE full-
page, four-color print ad in Java Developer’s Journal
with your first month’s insertion order.

Download a copy of our
instant media kit at JavaDevelopersJournal.com and
send us your insertion order before March 31, 1999 to
take advantage of this RISK-FREE OFFER!

LAST MONTH WE DELIVERED
1,320,841 AD BANNERS
HOW MANY OF THEM WERE YOURS?

LAST MONTH WE DELIVERED
1,320,841 AD BANNERS
HOW MANY OF THEM WERE YOURS?

“Our banner on the
JDJ web site was by
far the most active
banner we had. It
brought in nearly
twice as many click
throughs as the
second most
productive banner.”

“Our banner on the
JDJ web site was by
far the most active
banner we had. It
brought in nearly
twice as many click
throughs as the
second most
productive banner.”

— Mark Spencer
Marketing Manager

Tidestone Technologies, Inc.
mspencer@tidestone.com

“Our banner on the
JDJ web site was by
far the most active
banner we had. It
brought in nearly
twice as many click
throughs as the
second most
productive banner.”

— Mark Spencer
Marketing Manager

Tidestone Technologies, Inc.
mspencer@tidestone com

58 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Java Servlets provide a number of signif-
icant benefits to Web and application
servers everywhere:
• The ability to write a server-side applica-

tion that can run without regard to the
hardware, server operating system or
Web server

• A dramatic performance boost over CGI
or interpreted script applications

• Increased productivity using the Java lan-
guage to build such applications

The third benefit has seen an even
greater boost in the form of dynamically
compiled Web pages when using the Java
Web Server from Sun Microsystems; this
technology finally gave servlet developers
the RAD technology they’ve needed to pro-
duce complex Web applications faster.

The next step in the trend toward
greater productivity has been taken and is
called JavaServer Pages, or JSPs. This time
around you’re not limited to using the Java
Web Server. Third-party servlet engine
providers, such as Live Software and IBM,
allow you to deploy JSP applications on
every major Web server and platform. All
the players in this arena adhere to a basic
specification as defined by Sun, but not all
JSPs are equal. (For example, servlet pio-
neer Live Software has added objects that
closely resemble the objects found in
Microsoft’s Active Server Pages.) Obvious-
ly, this lends itself well to a direct compari-
son between what Sun and IBM have to
offer and what Live Software brings to the
table. This article will give the reader a
comparison of the two JSPs by delving into
the details of their respective specifications
and bringing to light their similarities and
differences.

Let’s begin with the JavaServer Pages
specification, as defined by Sun Microsys-
tems. Essentially, this technology allows
you to embed the Java language in Web
pages that end with the .jsp extension
rather than .html. What they’re doing here
isn’t terribly different from what they’ve
done with their .jhtml pages on the Java
Web Server. (See my JDJ article [Vol. 3,
Issue 6] on “Dynamic Page Compilation

with the Java Web Server” to update your-
self on this technology.)

Sun begins by changing .jhtml tags like
<java>...</java> to Active Server Page tags
like <%...%>. Sun divides the JSP spec into
five different areas, the first of which is
Directives. Table 1 describes the six JSP
Directives to be inserted at the top of your
Web page.

The second area defined by the spec is
JSP Declarations, which define class-wide
variables and methods using the SCRIPT
tag. The SCRIPT open tag is <SCRIPT
runat=server> and the close tag is

</SCRIPT>. The “runat=server” part of the
tag is required to ensure that your Web
browser won’t think that your JSP is defin-
ing client-side JavaScript code. An example
is shown below:

<SCRIPT runat=server>
int I = 0; String X = “Hello”;
Public void Send() {
//code
</SCRIPT>

JSP Scriptlets define the body of the gen-
erated Servlet’s Service method, and are
the third area defined by the JSP spec. They
look like this: <%...%>. Most of the Java
code to be written will end up between
these two tags. Table 2 describes the four

A comparison of two Java Server Pages –
their similarities and differences

by Rob Tiffany

JSP vs JSP
JAVA SERVER PAGES

1. The scripting language being used: <%@ language="java" %>
2. The interfaces being implemented: <%@ implements="com.insource.MyInterface" %>
3. The class that the Servlet extends: <%@ extends="javax.servlet.http.HttpServlet" %>
4. Packages that the Servlet imports: <%@ import="java.io.*,java.util.Hashtable" %>
5. Content type: <%@ content_type="text/html;charset=UTF-8" %>
6. Servlet method being used: <%@ method="doPost" %>

Table 1: The six JSP directives

Object Explanation Example
request The servlet request class as defined by <%

javax.servlet.http.HttpServletRequest String Name = request.getParameter("Name");
String Phone = request.getQueryString("Phone");
Cookie inCookie[] = request.getCookies();
%>

response The servlet response class as defined by <%
javax.servlet.http.HttpServletResponse Cookie outCookie = new Cookie("Name", "Value");

Response.addCookie(outCookie);
Response.sendRedirect("http://www.conoco.com");
%>

out The servlet output writer class as defined <% out.println("Insource is great!"); %>
by java.io.PrintWriter

in The servlet input reader class as defined
by java.io.BufferedReader

Table 2: The four predefined variables used throughout JSP applications

Method Explanation Example
setAttribute(String objName, Stores the object with the given <% Application.setAttribute
Object object) object name in the application ("AppArray", "MyArray"); %>

removeAttribute(String objName) Removes the object with the <% Application.removeAttribute
givenname from the application ("AppName"); %>

get(String objName) Returns the object with the objName <% String X = Application.get("AppName"); %>

Table 3: Syntax for using Application object and its associated methods

59VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

predefined variables that you’ll use
throughout your JSP applications.

The fourth area defined by the spec is
JSP Expressions, using tags like this: <%=
%>. Expressions specified within these tags
will first be evaluated, with the result con-
verted into a string and displayed. Any
primitive type between these tags will be
converted to a string, as follows:

<% int I = 25; %>
<%I %> //prints out 25 as a string

The final area defined by the JavaServer
Pages spec is the Bean tag. This tag gives
your page a conduit to regular or Enter-
prise JavaBeans that will encapsulate busi-
ness logic separately from the content pre-
sentation. Although it’s not a requirement,

the bulk of your Java code should be inside
JavaBeans and not on the JSP page; Java-
Beans will give your JSPs their database
access through JDBC or access to other dis-
tributed objects through CORBA or RMI.
Utilizing JavaBeans from JSPs is the next
logical step from using imported classes, as
was the norm with JHTML pages in the Java
Web Server 1.1. The Bean tag provides the

Method Explanation Example
Cookies(String name) This method returns a single cookie object with the given name <% Cookie c = Request.Cookies("CookieName"); %>
Cookies(String name, String subkey) This method accesses the subvalue of a multivalued cookie <%=Request.Cookies("CookieName", "type1"); %>
Form(String name) Returns the form value for a given name <% String x = Request.Form("StringName"); %>
QueryString(String name) Returns the querystring value for a given name <%

String lastname = Request.QueryString
("QueryStringName");
%>

ServerVariables(String header) Returns the header value for a given header name <%
String lastURL =
Request.ServerVariables("HTTP_REFERRER");
%>

Table 4: Request methods

Method Explanation Example
CharSet(String charSet) Appends the name of the character set to the content-type <% Response.CharSet("ISO-LATIN-7"); %>

header in the Response object
ContentType(String contentType) Specifies the HTTP content type for the Response. If no <% Response.ContentType("image/JPEG"); %>

content type is specified, the default is text/html
AddHeader(String name, String value) Adds an HTTP header and will replace an existing header of <%

the same name. This must be sent before any other output is Response.AddHeader("WARNING", "Error with
sent to the client unless the Buffer property is set to TRUE your DHTML");

%>
sendRedirect(String url) Causes the browser to attempt to connect to a <%Response.sendRedirect("http://www.insource.com");

different URL %>
buffer(boolean buffer) Indicates whether to buffer page output and not send a <% Response.buffer(TRUE); %>

to the client until all server code has been response
processed, or until the Flush or End method has been called

appendToLog(String logString) Adds a string to the end of the Web server log entry <%
for this request Response.appendToLog("I love server-side programming");

%>
binaryWrite(byte[] data) Writes the specified information to the current HTTP output <% Response.binaryWrite(BarChart.Image); %>

without any character conversion. This method is useful for
writing nonstring information such as binary data required
by a custom application

clear() Erases and buffered HTML output with the exception of <% Response.clear(); %>
the response headers

end() Causes the Web server to stop processing the code and <% Response.end(); %>
return the current result

flush() Sends buffered output immediately but will cause a runtime <% Response.flush(); %>
error if Response.buffer has not been set to TRUE

write(String s) Writes a specified string to the current HTTP output <% Response.write("Hello World"); %>
Cookies(String name) Returns the Cookie object with the given name and is also <%

used to set the Cookie’s properties Response.Cookies("CookieName").setMaxAge(60*60*24*
7*8);
%>

Cookies(String name, String value) Assigns the value of the cookie of the given name and <%
overwrites old values if the cookie already exists Response.Cookies("CookieName", "CookieValue");

%>

Table 5: JRun Server Page Response methods

60 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

syntax that allows the JSP to refer to the
bean, as follows.

< BEAN name="lookup name" varname="alter-
nate variable name" type="class or inter-
face name" introspect="(yes/no)"
beanName="filename" create="(yes/no)"
scope="(request/session)" >
<PARAM Property="Value">
</BEAN>

Let’s take a closer look at the attributes
found in the Bean tag. The name attribute
identifies the key by which the bean is
looked up. The optional varname attribute
identifies the variable name that will refer
to the bean. The type attribute – again
optional – specifies the name of the bean’s
class, or interface, and defaults to the
Object type. The introspect attribute is
also optional and is set to either yes or no;
by default the introspect attribute is set to
yes, which means that the appropriate
property – setter methods from the bean’s
BeanInfo – is called for each matching
property. The optional create attribute is
also set to either yes or no and defaults to
yes. When yes is set, the bean is created if
not found in the specified scope, whereas
an error returns if no is specified and the
bean isn’t found. The scope attribute is
optional and is set to either request or
session. Scope is set to request by default
where the bean is retrieved from the
request context. If scope is set to session,
the bean is reused from the current
session, if present. The beanName
attribute is the name of the serialized file
or class file that contains the bean and is

used only when the bean is not present in
the scope of the Bean tag and the value of
create is yes. Finally, the PARAM tag can be
optionally inserted inside the Bean tag to
define values for a list of properties that
will be set automatically through intro-
spection. An example Bean tag would look
like this:

<BEAN name="db" type="com.insource.beans.db"
scope="session">
<PARAM LastName="Flatt" FirstName="Darren">
</BEAN>
<%=db.LastName %>

Remember that this spec is layered on
top of the Servlet API, so any code you’ve
included with servlets can be included in
your JSPs. As always, make sure the classes
and beans you call from your JSPs are in
your Classpath or they won’t work. While
objects like Request, Response and Out are
included with the Sun JSP spec, you’ll have
to utilize the Servlet API to build full-blown
Web applications. Somehow, the most
important object for building cohesive Web
applications, the Session object, has been
left out of the spec. To rectify that problem
you’ll need to add this line of code on your
Web page before any other session-related
code:

<% HttpSession session = request.getSes-
sion(true); %>

With the addition of this code, you
can add, retrieve and remove Session
variables throughout your Web application,
as follows:

<%
session.putValue("Item", "Hat");
//add a Hat to the Item session variable
session.getValue("Item");
//retrieves the value of the Item session
variable
session.removeValue("Item");
//removes the Item session variable
%>

This sums up the major features of the
JSP spec as laid out by Sun Microsystems.
With this spec and a little help from the
Servlet API, you can build full-featured Web
applications that run in the Java Web Serv-
er and any server supported by IBM’s
servlet engine.

The other main player in this JSP drama
is Live Software. Their most notable prod-
uct is a freely distributed servlet engine
called JRun that allows users of most major
Web servers to run Java Servlets. This has
been a great deal for Web application devel-
opers who don’t want to be tied to propri-
etary server APIs such as NSAPI or ISAPI,
but want a performance boost over CGI. Of
course, IBM also provides a servlet engine
that runs on many Web servers and imple-
ments the Sun JSP spec, but Live Software
has gone a step further by adding objects
that will look familiar to Active Server Page
developers. Since we’ve already covered
the Sun spec, which also provides the basis
of Live Software’s JRun Server Pages, we’ll
move on to the Objects and features that
JRun adds above and beyond what Sun pro-
vides.

Just like Sun’s JSPs, JRun Server Pages
are made up of Directives, Declarations,

Method Explanation Example
CreateObject(String classname) Instantiates an object from the given classname. This method is <%

here only to provide compatibility with the same ASP method. Server.CreateObject("com.insource.beans.ecom");
It is recommended that you use the JSP Bean tag to instantiate %>
an object

HTMLEncode(String string) Applies HTML encoding to a specified string <%=Server.HTMLEncode("The bold tag: "); %>
URLEncode(String string) Applies URL encoding, including escape characters, to the <%

string Response.write(Server.URLEncode
("http://www.javasoft.com"));
%>

MapPath(String string) Maps the specified relative or virtual path to the corresponding <% Server.MapPath("script/data.txt"); %>
physical directory on the server

Table 6: Callable methods of the Server Object

Method Explanation Example
getSessionID() Returns the unique sesssion identification for this user <% int I = Session.getSessionID(); %>
putValue(String name, Object object) Stores the object with the given name in this session <% Session.putValue("Name", "Value"); %>
getValue(String name) Returns the object stored in this session with <%

the given name String ShoppingCart = Session.getValue("Name");
%>

removeValue() Removes the object bound to the given name in the session <% Session.removeValue("Name"); %>

Table 7: Available Session methods

61VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Scriptlets, Expressions and the Bean tag.
JRun Server Pages Directives add server-
side include functionality through the use of
the include and vinclude variables. The
include variable allows you to insert the con-
tents of a file relative to the local file system,
and the vinclude variable does the same
thing relative to the Web document root.

More important, JRun Server Pages add
ASP Compatibility Objects to ease the
migration of Active Server Pages Web appli-
cations to JSP. The Application object
allows you to share information among all
the users of a Web application, as defined
by the JSP files in a virtual directory, as well
as its subdirectories. The syntax for using
this object and its associated methods
appears in Table 3.

The Request Object retrieves the data
passed to the server by the Web browser.
With the Request Object you can use ASP
Compatibility methods as well as all other
methods made available in the HttpServlet-
Request class. Any variable may be
accessed by calling Request(String name),
whether it comes from a Form, Query-
String, Cookie or Server Variable. If a vari-
able with the same name exists in more
than one collection, Request will return the
first instance it encounters. You can be
more specific by calling one of the Request
methods in Table 4.

The Response object sends data to the
client Web browser. As with the Request
object, you can use ASP Compatibility
methods in addition to all other methods
made available in the HttpServletResponse
class. JRun Server Page Response methods
include those in Table 5.

The Server Object provides access to
methods and properties on the server;
most of them serve as utility functions.
Callable methods of this object are
found in Table 6.

The Session Object allows you to store
information throughout the life of a particu-
lar user session. Variables stored in the Ses-
sion Object persist, as the user jumps from
page to page in your Web application. A
Session Object is created when a user who
doesn’t already have a session requests a
Web page. The server destroys the Session
Object when the session expires due to
inactivity or abandonment in code. (It
should be noted that Session state is main-
tained only for browsers that support cook-
ies.) Available Session methods are shown
in Table 7.

The final ASP-related object in the JRun
Server Pages is the global.jsa file; this file
mirrors the global.asa file found in Active
Server Pages and performs the same func-
tions. Your JSP application can have only
one global.jsa file, which must then be locat-
ed in the root directory of the application.
JSP reads the global.jsa file when the Web
server receives the first poststart-up request
for any .jsp file in an application, or when a
user who doesn’t have a session requests a
.jsp file in an application. You can include
Application start/end events, as well as Ses-
sion start/end events, in your global.jsa file.
The syntax and restrictions on global.jsa
events are described in Table 8.

Live Software’s JSPs also include a few
other features that further reduce the time
it takes to build Web applications. Taglets
allow programmers to define their own cus-
tom HTML tags that perform a certain func-
tion. A Java programmer can define a
reusable, server-side Taglet that will exe-
cute Java code to do anything you can do
using Java. A nonprogramming Web page
designer can then use that Taglet in his or
her Web pages without having to under-
stand the complexities of the Java code it’s
executing. This method of creating custom
HTML tags goes a long way toward separat-

ing the Web presentation
from the underlying business
logic. Last, Live Software goes
beyond merely allowing you
to communicate with Jav-
aBeans from your Web page;
it adds several useful beans
to get you started: a File
bean, an HTTP bean, an SMTP
mail bean, a Shopping Cart
bean, and Database Connec-
tivity beans with built-in con-
nection pooling.

Clearly, both Sun’s and
Live Software’s approaches
to building JSPs go further
than any other tool currently
used to build sophisticated
Web applications. The spec-
tacular thing is that this is
accomplished without tying

the Web developer to a particular Web
server or operating system. Sun should be
applauded for identifying the fact that not
everyone wants to build servlets from
scratch. JSPs allow novice Web program-
mers to learn Java a little bit at a time,
using their favorite HTML editor. The
JSP/Bean model of development allows
teams of Web page designers and artists to
do what they do best, while the Java pro-
grammers develop JavaBeans that inter-
face with databases, distributed objects
and other systems.

The full suite of Enterprise Java APIs is
available for use with JSPs. Java Server
Pages, as defined by Sun and IBM, are a
great step forward from JHTML Dynamic
Page Compilation in terms of ease of pro-
gramming. Live Software has taken the
torch and run even farther with its JSP
implementation. Its ASP Compatibility
Objects, Taglets and beans dramatically
reduce the amount of coding a Web devel-
oper has to perform to get a powerful Web
application out the door quickly. The pro-
ductivity gains achieved by using JRun
Server Pages are rivaled only by
Microsoft’s Active Server Pages. Of course,
your JSP application won’t be tied to Inter-
net Information Server; it will be portable
to any Web server you desire. That’s why
we use Java.

About the Author
Robert Tiffany is a senior technology consultant
with Insource Technology in Houston, Texas. He is
working on an e-commerce Web site using servlet
technology for the George Bush Presidential Library.
Robert has worked on Internet/intranet/extranet
development with both Active Server Pages and
Enterprise Java technologies. You can reach him
at robertt@insource.com.

Event Explanation Example
Session_OnStart Can access any object a "normal" JSP file can <script runat="server" event="Session_OnStart">

Response.write("Hello This is a new Session
");
System.out.println("Session_OnStart called for:
"+Session.getId());
</script>

Session_OnEnd Can only access the Application, Session, <script runat="server" event="Session_OnEnd">
and Server objects. The Server object cannot System.out.println("Session_OnEnd called for:
call the MapPath() method "+Session.getId());

</script>
Application_OnStart Can only access the Application and Server <script runat="server" event="Application_OnStart">

objects System.out.println("Application_OnStart called");
Application.setAttribute("greeting", "hi mom");
</script>

Application_OnEnd Can only access the Application and Server <script runat="server" event="Application_OnEnd">
objects System.out.println("Application_OnEnd called");

Application.removeAttribute("greeting");
</script>

Table 8: Syntax and restrictions on global.jsa events

robertt@insource.com

Optimizeit 3.0 Professional
Ships
(Sunnyvale, CA) – Intuitive Sys-
tems, Inc., is shipping Opti-
mizeit 3.0 Professional, the
Java technology-based perfor-
mance tool that allows devel-
opers to test and improve the
performance of most Java
applications, applets, servlets
and JavaBeans.

The new product includes
full support for Sun Microsys-
tems’ Java Development Kit
(JDK version 1.2). It is also eas-
ily integrated with develop-
ment environments JBuilder
from Inprise Corp. and Visual-
Café from Symantec, Inc.,
allowing developers to directly
profile their Java programs
from their development envi-
ronment of choice.

Optimizeit Professional 3.0
is available at $449 for Win-
dows 95 and 98 platforms, and
will soon be available for Sun’s
Solaris operating environment.

For additional information,
call 408 245-8540 or visit
www.optimizeit.com.

Objective Toolkit for ATL
from Rogue Wave
(Research Triangle Park, NC) –
Rogue Wave Software, Inc., has
added to its Stingray product
line with Objective Toolkit for

ATL, which extends Microsoft’s
Active Template Library (ATL).
ATL enables C++ developers to
more easily develop reusable
COM objects. Objective Toolkit
for ATL enhances that ability
by maximizing code reuse
through GUI, COM and produc-
tivity enhancements in familiar
ATL-like implementations,
increasing the ability to create
solid, feature-rich components
for the enterprise.

Objective Toolkit for ATL is
available this quarter for $995
in North America. This
includes full source code, 60
days of technical support and
a 30-day money-back guaran-
tee. Annual support licenses
are available for $495 in North
America and include a full year
of technical support as well as
product updates.

For more information call
800 487-3217, e-mail
sales@roguewave.com or visit
the company Web site at
www.roguewave.com.

JHL Computer Consultants
Sign Agreement with
Progress Software
(Fort Lauderdale, FL) – JHL
Computer Consultants, a train-
ing and development
company, and Progress
Software Corporation
have signed a train-
ing agree-
ment for
Progress Apptivity
version 3, a Java appli-
cation server with an integrat-

ed development. Apptivity
enables IT and ISV organiza-
tions to rapidly deliver new
and enhanced applications for
intranets, extranets
and the Internet. JHL
will also provide
development ser-
vices in Apptivity.

The Apptivity application
server provides a secure and
scalable CORBA-based server

architecture that
supports Enter-

prise JavaBeans. App-
tivity’s SmartAdapter

framework allows applications
to access external data sources
through a standard data inter-
face model.

For details call Progress
Software at 800 477-6473 or
visit www.progress.com.

KL Group JProbe Adds
Memory Debugger to
Performance Profiler
(Toronto, Ont.) – KL Group
Inc., a provider of Java compo-
nents and advanced develop-
ment tools, will ship its
advanced Java performance
profiler and memory debugger,
JProbe 2.0, this quarter. The
profiling tool makes it easy to
identify and eliminate perfor-

mance bottlenecks and memo-
ry leaks in Java code, and pro-
vides heap analysis tools that
help find memory leaks to
reduce development time and
improve code quality. JProbe
profiles applications written in
JDK 1.1 or Java 2 software for
Windows and Solaris.

JProbe technology lever-
ages the Java Virtual Machine
to capture all objects created
and any method calls per-
formed by the Java code being
profiled. The profiler reports
application performance on a
per-method or per-line basis,
speeding the process of perfor-
mance tuning. The memory
debugger accuracy combined
with graphical analysis tools
makes a powerful and easy-to-
use Java performance profiling
and exploration tool.

JProbe 2.0 will be generally
available this quarter. The pro-
filer will start at $499 for a sin-
gle developer license. JProbe
Profiler and
KL Group’s
100% Pure
JClass Java-
Beans are
available from qualified
resellers and their Web site at
www.klgroup.com.

(Burlington, MA) – Novera
Software Inc. has integrated
jBusiness 4 with the Silver-
Stream application platform.
Customers can now extend
the Novera and SilverStream
environments by integrating
Novera’s Enterprise Business
Objects into SilverStream
solutions.

jBusiness is an application
and management framework
that allows
customers
to create
Enterprise
Business
Objects as

the foundation for distributed
enterprise applications.
These objects encapsulate
enterprise data from legacy
systems into reusable soft-
ware objects based on
CORBA and Enterprise Java-
Beans standards. The jBusi-
ness Management Server also
provides end-to-end manage-
ment of applications built
with SilverStream that access
Enterprise Business Objects,
including configuration, secu-
rity and monitoring.

For more information call
888 NOVERA1 or visit
www.novera.com.

Novera Announces
jBusiness for SilverStream

(Scotts Valley, CA.) --
Inprise Corporation, a
provider of enterprise inte-
gration software and services,
has signed a worldwide, mul-
timillion-dollar licensing
agreement with Oracle Corpo-
ration. Under the terms of the
multiyear agreement, Oracle
has selected Inprise’s VisiBro-

ker as one of its
worldwide standards for
CORBA object request broker
(ORB) technology. To date,
VisiBroker has been integrat-
ed into Oracle8i, Oracle
Application Server and other
Oracle products.

For more information visit
www.inprise.com.

Oracle Expands Relationship
with Inprise Corporation

62 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

63VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Employment Ad
www.omg.org

64 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 3 1999

Employment Ad
www.omg.org

65VOLUME: 4 ISSUE: 3 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Employment Ad
www.omg.org

66 • VOLUME: 4 ISSUE: 3 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

In the final months of 1998 it was worth reflecting on the networked application plat-
form and its star player, Java, as we headed into the new year. Many of you have written
and put forward your own assessment of the Java movement as it rode into 1999, repre-
senting the fourth year of Java as a commercially available development platform.

This is the first installment of our theme “Java – Into Its 4th Year,” and we will review
the platform independence promise of the Java platform: run anywhere, anytime. It’s not
an all or nothing proposition.

Never has more hype surrounded a basic notion of platform independence as Java’s
“run anywhere, anytime” promise. This was particularly acute with Java on the client side
(in browsers). Unfortunately, Sun’s marketing messages were taken completely out of con-
text and Java developers assumed that any piece of compiled Java code would magically
run not only on all virtual machines and platforms, but in all circumstances as well. Why
would any experienced developer fall into such a predicament?

The marketing message should probably have been “Java, run anywhere, anytime –
with the appropriate amount of effort!” It’s certainly possible to create a Java client that
runs across the vast majority of possible client configurations. Creating a Java client that
runs across all possible client configurations is not significant, that is, it’s not necessary to
cover all permutations to achieve the desired effect. In other words, if out of 100,000 end
users 10 can’t access your Java client because they’re running OS/2 and the Navigator 2.0
browser, does that constitute a failure in deployment? I should say not.

A well-engineered Java client is extremely successful against a wide cross-section of
possible client configurations easily covering 90% of possible end users. Witness the
Yahoo! game site and its multiplayer Java games: chess, backgammon and checkers. The
Yahoo! games constituency runs across Macintosh, Windows and Solaris Workstations,
and various versions of browsers across each. Witness the PROGRESS Apptivity 3.0 Java
client that supports Netscape and the IE 3.x and 4.x browsers across all major OS plat-
forms. “Support” doesn’t translate into “works every time without any effort on your part”;
it translates into “will be portable with a reasonable amount of effort by the developer and
the vendor.”

On the server side, Java platform independence has received additional scrutiny. While
it’s clear that the UI layer presented the toughest platform challenges, the server side is
not immune from slight discrepancies in the JVM. The most important thing to remember
is that server-side processes, particularly those oriented at high-transaction business
functions, are very reliant on the robustness of the JVM implementation. A server process
with 1,200 threads and 1,500 object instantiations is no angel; it’s significantly dependent
on its Java container. Such a beast running on JVM 1.0.2 would most certainly come to a
crashing halt, while under JVM 1.2 it would most likely hold its own. It would perform even
better if such a complex process was abstracted on top of a competent CORBA infrastruc-
ture.

Once again, this shows the importance of layering the Java solution and insulating the
developer from the challenges faced in achieving platform independence and perfor-
mance. On the client side, the developer using a proven, supported Java client architec-
ture will achieve success far and above a counterpart creating the client from scratch. At
the very least, the Java client should take advantage of a foundation class such as
JFC/Swing, AFC or Netscape’s IFC. On the server side, the developer building on top of JDK
1.2, Corba and EJB will get to successful deployment and scalability while the developer
building from scratch will most likely never achieve deployment at any reasonable scale!

Java is heading into its fourth full year as a legitimate language and platform, and with
it, developers can achieve platform independence with a reasonable effort. How much
effort will be required to port an ActiveX control across Unix, Windows and Mac platforms?
How much effort will be required to port a significant C or C++ executable across these
platforms?

Platform independence is not an all or nothing proposition. It’s a question of practical-
ity, and a question of reasonable effort leading to significant value!

Java – Into Its 4th Year

by Java George

Java George is George Kassabgi, director of
developer relations for Progress Software’s
Apptivity Product Unit. You can e-mail him at
george@apptivity.com.

THE GRIND

“A well-engineered

Java client is

extremely successful

against a wide

cross-section of

possible client

configurations...”

george@apptivity.com

http://www.JavaDevelopersJournal.com 67Java DEVELOPER’S JournalVOLUME: 4 ISSUE:1 1999 •

ObjectSpace
www.objectspace.com

68 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

KL Group
www.klg.com

• VOLUME: 4 ISSUE: 3 1999

